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Abstract

We report on the application of higher-order automated theorem proving in ontology reasoning.
Concretely, we have integrated the Sigma knowledge engineering environment and the Suggested
Upper-Level Ontology (SUMO) with the higher-order theorem prover LEO-II. The basis for this
integration is a translation from SUMO’s SUO-KIF representations into the new typed higher-order
form representation language TPTP THF. We illustrate the benefits of our integration with examples,
report on experiments and analyze open challenges.

1 Introduction

In recent years much progress has been made regarding applications of first-order automated theorem
provers (FO-ATP) in ontology reasoning and question answering. A prominent example is the application
of FO-ATPs to the Suggested Upper-Level Ontology (SUMO) [22]. Related work has also been reported
for Cyc [24] and the LogAnswer question answering system [13], and further related references are given
in [13]. In all those approaches, translations from the ontology representation languages into proper first-
order representations are employed.

Challenges that have been identified in this application context, amongst others, include the large
theories challenge and answer extraction problem. The former addresses the problem that the proofs are
often shallow while the axiom sets are usually huge and may contain lots of information irrelevant to
a given query. The latter deals with the issue of extracting single or multiple answers to queries from
prover output.

Another challenge, which is in the focus of this paper, is that knowledge bases such as SUMO
contain a small but significant amount of higher-order representations. SUMO, for example, began as
just an upper level ontology encoded in first-order logic but subsequently its logic has been expanded to
also include higher-order elements.

The approach taken in the above systems to reason with higher-order content is to employ specific
translation ’tricks’, possibly in combination with or in addition to some pre-processing techniques. An
example is the quoting technique for embedded formulas as employed in the Sigma knowledge engineer-
ing environment [22]. Unfortunately, however, this solution is strongly limited. The effect is that many
desirable inferences are currently not supported, so that many queries cannot be answered. Illustrating
examples are presented in this paper and a solution is proposed that employs higher-order automated the-
orem proving (HO-ATP) for the task. Our solution exploits the new TPTP infrastructure for higher-order
automated theorem proving [27] and provides a generic translation from the Standard Upper Ontology
Knowledge Interchange Format (SUO-KIF) [20] into the new typed higher-order form (THF) language
of the TPTP.

This paper is structured as follows. In Section 2 we briefly sketch the background of our work. Sec-
tion 3 further motivates it with examples. Our translation from the SUO-KIF to TPTP THF is presented
in Section 4. Implementation, system integration and experiments are reported in Section 5. The paper
ends with a discussion of open challenges and future work.

∗This work was funded by the German Research Foundation (DFG) under grant BE 2501/6-1.
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2 Background

SUMO [17] is an open source1, formal ontology. In addition to the expressive logic it was authored in,
it has also been translated into the OWL semantic web language. It has undergone ten years of develop-
ment, review by a community of hundreds of people, and application in expert reasoning, linguistics and
performance testing for theorem provers. SUMO has been subjected to partial formal verification with
automated theorem provers. This consisted of asking a theorem prover to prove the negation of each
axiom in the knowledge base. While necessarily incomplete, this did focus the attention of the prover
with more success than simply asking it to prove ”false”. With repeated testing on incrementally more
generous time allotments, this method caught a number of non-obvious contradictions. It has been one
method of many partial methods to ensure quality and consistency.

SUMO covers areas of knowledge such as temporal and spatial representation, units and measures,
processes, events, actions, and obligations. SUMO has been extended with a number of domain specific
ontologies, which are also public, together they number some 20,000 terms and 70,000 axioms. Domain
specific ontologies extend and reuse SUMO, for example, in the areas of finance and investment, country
almanac information, terrain modeling, distributed computing, and biological viruses. SUMO has also
been mapped by hand [18] to the entire WordNet lexicon of approximately 100,000 noun, verb, adjective
and adverb word senses, which not only acts as a check on coverage and completeness, but also provides
a basis for application to natural language understanding tasks.

SUMO has natural language generation templates and a multi-lingual lexicon that allows statements
in SUMO to be automatically paraphrased in multiple natural languages.

The formal language of SUMO is SUO-KIF, a simplified version of the original KIF [14], with
extensions for higher-order logic. Since SUO-KIF syntax is rather self-explaining we avoid a formal
introduction here and provide some explanations on the fly. For further details we refer to [20].

Sigma [21] is a browsing and inference system that is both a stand-alone system for ontology devel-
opment and an embeddable component for reasoning. We have also developed a set of optimizations that
improve the performance of reasoning on SUMO, typically by “trading space for time” — pre-computing
certain inferences and storing them in the knowledge base [21]. In many cases this results in speedups of
several orders of magnitude. While Sigma originally included only the Vampire prover for performing
logical inference on SUMO, it now embeds the TPTPWorld environment [29], giving it access to some
40 different systems, including the world’s most powerful automated theorem provers and model gener-
ators. Sigma now also integrates the SInE reasoner [16], which was the winner of the SUMO division of
the CASC international theorem proving competition [23]. Use of the SInE axiom selection system has
been shown to provide orders of magnitude improvements in theorem proving performance compared to
using top-performing theorem prover, such as E or Vampire, alone. By selecting its best guess at axioms
relevant to a particular query, it can dramatically reduce the search space for solving queries on large
knowledge bases, such as SUMO, where only a small number of axioms are likely to be relevant to any
given query. Sigma handles making statements and posing queries to the different reasoners, optimizing
the knowledge sent to them to support efficient inference, and handling their output, formatting answers
and proofs in a standard and attractive format. Sigma includes a Java API and XML messaging interface.

HO-ATP is currently experiencing a renaissance that has been fostered by the recent extension of the
successful TPTP infrastructure for first-order logic [26] to higher-order logic, called TPTP THF [27, 28].
Available HO-ATPs include LEO-II [10], TPS [2], IsabelleP, IsabelleM/N2 and Satallax [3]. These
systems are available online via the SystemOnTPTP tool [25], they support the TPTP THF infrastructure,
and they employ THF0 [11], the simple type theory fragment of the THF language, as input language.

1www.ontologyportal.org
2IsabelleM and IsabelleN are model finders in the Isabelle proof assistant [19] that have been made available in batch mode,

while IsabelleP applies a series of Isabelle proof tactics in batch mode.
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3 Examples and Challenges

Our goal has been to enable and study applications of HO-ATP for question answering in ontology
reasoning, exemplary in SUMO. In this section we present some motivating examples. They illustrate
the potential of our approach to reason within temporal and other contexts. We also point to a problem
regarding Boolean extensionality and epistemic modalities.

Embedded Formulas Embedded formulas are one prominent source of higher-order aspects in SUMO.
This is illustrated by the following example, which has been adapted from [22]. (Premises are marked
with P and the query is marked with Q. In SUMO variables always start with a ’?’. Free variables in
queries are implicitly existentially quantified and those in premises are implicitly universally quantified.)

Example 1 (During 2009 Mary liked Bill and Sue liked Bill. Who liked Bill in 2009?).
P1: (holdsDuring (YearFn 2009) (and (likes Mary Bill) (likes Sue Bill)))

Q: (holdsDuring (YearFn 2009) (likes ?X Bill))

The challenge is to reason about the embedded formulas (and (likes Mary Bill) (likes Sue

Bill)) and (likes ?X Bill) within the context (holdsDuring (YearFn 2009) ...). In our ex-
ample, the embedded formula in the query does not match the embedded formula in the premise, how-
ever, it is inferable from it. The quoting technique presented in [22], which encodes embedded subformu-
las as strings, fails for this query. There are possible further ’tricks’ though which could eventually be ap-
plied. For example, we could split P1 in a pre-processing step into P2: (holdsDuring (YearFn 2009)

(likes Mary Bill)) and P3: (holdsDuring (YearFn 2009) (likes Sue Bill)). However,
such means quickly reach their limits when considering more involved embedded reasoning problems.
The following modifications of Example 1 illustrate the challenge.

Example 2 (Example 1 modified; ’and’ reformulated).
P4: (holdsDuring (YearFn 2009)

(not (or (not (likes Mary Bill)) (not (likes Sue Bill)))))

Q: (holdsDuring (YearFn 2009) (likes ?X Bill))

Example 3 (At all times Mary likes Bill. During 2009 Sue liked whomever Mary liked. Is there a year
in which Sue has liked somebody?).
P5: (holdsDuring ?Y (likes Mary Bill))

P6: (holdsDuring (YearFn 2009) (forall (?X) (=> (likes Mary ?X) (likes Sue ?X))))

Q: (holdsDuring (YearFn ?Y) (likes Sue ?X))

In particular, Example 3 illustrates that the reasoning tasks may indeed quickly become non-trivial
for approaches based on translations to first-order logic. This example can be further modified as follows.
Here we use a propositional variable ?P in order to encode that what generally holds also holds in all
holdsDuring-contexts.

Example 4 (What holds that holds at all times. Mary likes Bill. During 2009 Sue liked whomever Mary
liked. Is there a year in which Sue has liked somebody?).
P7: (=> ?P (holdsDuring ?Y ?P))

P8: (likes Mary Bill)

P9: (holdsDuring (YearFn 2009) (forall (?X) (=> (likes Mary ?X) (likes Sue ?X))))

Q: (holdsDuring (YearFn ?Y) (likes Sue ?X))

We may instead of P7 express that true things hold at all times in an alternative way, cf. P7’ below.3

3Instead of P7’ we may equally well use e.g. P7”: (holdsDuring ?Y (equal Chris Chris)) or any other embedded
tautology.
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Example 5 (Example 4 modified).
P7’: (holdsDuring ?Y True)

P8: (likes Mary Bill)

P9: (holdsDuring (YearFn 2009) (forall (?X) (=> (likes Mary ?X) (likes Sue ?X))))

Q: (holdsDuring (YearFn ?Y) (likes Sue ?X))

Some key steps of the informal argument for the latter query are: Since True is always valid and
since we assume (likes Mary Bill) we know that these two formulas are equivalent. Hence, they
are equal. We can thus replace True in (holdsDuring ?Y True) by (likes Mary Bill). The
remaining argument is straightforward.

Set abstraction Another important higher-order construct in SUMO is the set (or class) constructor
KappaFn. It takes two arguments, a variable and a formula, and returns the set (or class) of things that
satisfy the formula. We illustrate the use of KappaFn in Example 6.

Example 6 (The number of people John is grandparent of is less than or equal to three. How many
grandchildren does John at most have?).
P10: (<=> (grandchild ?X ?Y) (exists (?Z) (and (parent ?Z ?X) (parent ?Y ?Z))))

P11: (<=> (grandparent ?X ?Y) (exists (?Z) (and (parent ?X ?Z) (parent ?Z ?Y))))

P12: (lessThanOrEqualTo (CardinalityFn (KappaFn ?X (grandparent John ?X))) 3)

Q: (lessThanOrEqualTo (CardinalityFn (KappaFn ?X (grandchild ?X John))) ?Y)

The query can be proved valid independent of the specific axiomatization of CardinalityFn. This
is because the embedded set abstractions can be shown equal.

Extensionality In the examples discussed so far we have assumed that the semantics of our logic is
classical and that the Boolean and functional extensionality principles are valid. In particular Boolean
extensionality, which says that two formulas P and Q are equal if and only if they are equivalent (or,
alternatively, that there are not more than two truth values), is relevant for all of the examples above.
Without it we could not even prove the following query since the denotations of the two embedded
formulas could be different despite the equivalence of these formulas.

Example 7 (During 2009 Mary liked Bill and Sue liked Bill. Is it the case that in 2009 Sue liked Bill and
Mary liked Bill?).
P1: (holdsDuring (YearFn 2009) (and (likes Mary Bill) (likes Sue Bill)))

Q: (holdsDuring (YearFn 2009) (and (likes Sue Bill) (likes Mary Bill)))

Functional extensionality, which is required in Example 6 in combination with Boolean extensional-
ity, has been discussed as an option for the semantics of KIF in [15]. The validity of Boolean extension-
ality has never been questioned though in the literature. Weakening it would require a semantics with
more than two truth values and this is not considered an option, neither in [15] nor in [20]. For a detailed
discussion of functional and Boolean extensionality in classical higher-order logic we refer to [7].

Modalities Challenge Assuming Boolean extensionality in the semantics of SUO-KIF seems perfectly
fine for the above examples. We do not want to conceal, though, the following problem related to
it. SUMO employs epistemic modalities, such as believes and knows. When used in combination
with Boolean extensionality, however, inferences are enabled that do obviously contradict their intended
meaning. We give an example that is very similar to Example 5; the main difference is that the temporal
context has been replaced by an epistemic context.
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Example 8 (Adapted Example 5 within epistemic context: Everybody knows that Chris is equal to
Chris. Mary likes Bill. Chris knows that Sue likes whomever Mary likes. Does Chris know that Sue
likes Bill?).
P7”: (knows ?Y (equal Chris Chris))

P8: (likes Mary Bill)

P9’: (knows Chris (forall (?X) (=> (likes Mary ?X) (likes Sue ?X)))

Q: (knows Chris (likes Sue Bill))

Assuming Boolean extensionality the query is valid, even though we have not explicitly stated the
fact (knows Chris (likes Mary Bill)). Intuitively, however, this assumption seems mandatory
for enabling the proof of the query. Hence, we here (re-)discover an issue that some logicians possibly
claim as widely known: modalities have to be treated with great care in classical, extensional higher-
order logic. Our ongoing work therefore studies how we can suitably adapt the modeling of affected
modalities in SUMO in order to appropriately address this issue.

Relation and Function Variables Generating suitable instantiations for relation or function variables
is another prominent higher-order challenge. For instance, in the following query the relation sib, with
(sib ?X ?Y) if and only if (or (sister ?X ?Y) (brother ?X ?Y))))), is a valid instantiation
for the queried variable ?R. (There are other instantiations possible for ?R in our example though and
enumerating them is a challenge for future work.) Our example illustrates that the invention of new
concepts like the notion of sibling from simpler notions like brother and sister is in principle feasible
in higher-order logic, though there are clearly practical limitations.

Example 9 (Mary, Sue, Bill and Bob are mutually distinct. Mary is neither a sister of Sue nor of Bill,
and Bob is not a brother of Mary. Sue is a sister of Bill and of Bob, and Bob is a brother of Bill. Is there a
relation that holds both between Bob and Bill and between Sue and Bob; we exclude the trivial universal
relation λX ,Y >).
P13: (and (not (equal Mary Sue)) (not (equal Mary Bill)) (not (equal Mary Bob))

(not (equal Sue Bill)) (not (equal Sue Bob)) (not (equal Bob Bill)))

P14: (and (not (sister Mary Sue)) (not (sister Mary Bill)) (not (brother Bob

Mary)))

P15: (and (sister Sue Bill) (sister Sue Bob) (brother Bob Bill))

Q: (and (?R Bob Bill) (?R Sue Bob) (not (forall (?X ?Y) (?R ?X ?Y))))

4 THF Translation

The main objective for our translation from SUMO to TPTP THF0 [11] has been to enable inferences as
required for query examples as presented above.

THF0 provides a syntax for Church’s simple type theory [1], that is, a classical logic built on top
of the simply typed λ -calculus. The standard base types in simple type theory are o and ι ; the former
denotes the set of Booleans and the latter a (non-empty) set of individuals . They are represented in THF0
as $i and $o. Further base types can be declared as needed. Function types in THF0 are encoded with
the >-constructor, e.g. the type of predicates (resp. sets) over type $i is denoted as $i > $o. THF0 files
obey the convention that the types of constant symbols and variable symbols have to be declared before
their first use. Type declarations for constant symbols are typically provided in a type signature part at
the beginning of each THF0 file while types of variable symbols are provided in their binding positions.

In our translation of SUMO to THF0 we recursively analyze all SUMO terms and subterms with the
aim of assigning consistent type information to them. From this process we then extract the assigned
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type information for all constant and variable symbols as required in THF0 files. When applying our
transformation procedure to P12, for example, we generate the following THF0 information:

%%% The extracted Signature %%%

thf(grandparent_THFTYPE_IiioI,type,(

grandparent_THFTYPE_IiioI: $i > $i > $o )).

thf(lCardinalityFn_THFTYPE_IIioIiI,type,(

lCardinalityFn_THFTYPE_IIioIiI: ( $i > $o ) > $i )).

thf(lJohn_THFTYPE_i,type,(

lJohn_THFTYPE_i: $i )).

thf(ltet_THFTYPE_IiioI,type,(

ltet_THFTYPE_IiioI: $i > $i > $o )).

thf(n3_THFTYPE_i,type,(

n3_THFTYPE_i: $i )).

%%% The translated axioms %%%

thf(ax,axiom,

( ltet_THFTYPE_IiioI

@ ( lCardinalityFn_THFTYPE_IIioIiI

@ ^ [X: $i] :

( grandparent_THFTYPE_IiioI @ lJohn_THFTYPE_i @ X ) )

@ n3_THFTYPE_i )).

This THF0 representation is, for obvious reasons, not intended for human consumption. It serves the
sole purpose of communicating the reasoning problem to the higher-order theorem provers. We briefly
sketch a few aspects: (i) So far, we use THF0 type $i as only base type other than $o; for example,
SUMO formulas and sentences are mapped to type $o while constants such as lJohn THFTYPE i and
n3 THFTYPE i, which are the translations of the SUMO constants John and 3, are currently both de-
clared of type $i.4 Function types, e.g. for lCardinalityFn THFTYPE IIioIiI, are determined by
our translation algorithm. Future work includes the introduction of further base types in combination
with a better exploitation of the rich typing information already available in SUMO. (ii) As expected,
the simple type computed for lCardinalityFn THFTYPE IIioIiI5, the translation of SUMO constant
CardinalityFn, is ( $i > $o ) > $i, that is, the arguments for this constant have to be sets of ob-
jects of type $i. (iii) KappaFn is mapped to λ -abstraction.

Assigning types to SUMO terms is in fact not as straightforward as this example might suggest. One
major problem is that SUMO supports self-applications as in the following SUMO axiom.

(instance instance BinaryRelation)

In order to translate such axioms we currently split affected constants like instance into separate
constants:

4TPTP syntax requires all constants in lower case, hence, the leading ’l’ and ’n’. Moreover, we also encode the computed
type information in the constant name; the reasons for this will become clear below.

5The ’I’s encode bracketing information.
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%%% The extracted Signature %%%

thf(lBinaryPredicate_THFTYPE_i,type,(

lBinaryPredicate_THFTYPE_i: $i )).

thf(instance_THFTYPE_IIiioIioI,type,(

instance_THFTYPE_IIiioIioI: ( $i > $i > $o ) > $i > $o )).

thf(instance_THFTYPE_IiioI,type,(

instance_THFTYPE_IiioI: $i > $i > $o )).

%%% The translated axiom(s) %%%

thf(ax,axiom,

( instance_THFTYPE_IIiioIioI @ instance_THFTYPE_IiioI

@ lBinaryPredicate_THFTYPE_i )).

Obviously, we thereby lose important information, for example, in our examples we now only know
that instance THFTYPE IiioI denotes a binary relation. If we want this information restored for
instance THFTYPE IIiioIioI we can generate a new constant instance THFTYPE IIIiioIioIioI

and a new axiom

thf(ax,axiom,((instance_THFTYPE_IIIiioIioIioI @ instance_THFTYPE_IIiioIioI

@ lBinaryPredicate_THFTYPE_i))).

Currently such a duplication of axioms is still disabled in our translation. Future work, however, will
study the need for such duplications more closely.

Our first project goal has thus been achieved, namely to provide a translation of the entire SUMO
into THF0 that can be parsed and type checked by all THF0 reasoners in the TPTP and that, in spite of its
need for further improvement, can already serve as a starting point for examples as we have discussed.6

5 System Implementation, Integration, and Initial Experiments

The THF translation mechanism has been implemented as part of the Sigma environment. This enabled
the reuse of already existing infrastructure, e.g. for manipulating formulas and knowledge bases, as well
as the reuse of existing first-order logic TPTP tools in Sigma.

Additionally, an initial integration of the LEO-II system has been created with Sigma. There are three
modes in which LEO-II can be applied to queries in this integration. The local mode only translates the
user assertions and the query, the global mode translates the entire SUMO knowledge base and then
adds the user assertions and the query, and the SInE mode employs Hoder’s SInE system to extract a
(hopefully) relevant subset of the axioms from the SUMO knowledge base.

We have conducted initial experiments with the LEO-II prover (version v1.1) integrated to Sigma:
All examples in this paper can be effectively solved by LEO-II in local mode, except for Example 9: Ex.1
(0.19s), Ex.2 (0.19s), Ex.3 (0.13s), Ex.4 (0.16s), Ex.5 (0.08s), Ex.6 (0.34), Ex.7 (0.18s), Ex.8 (0.04s),
Ex.9 (2642.55s) — the timings were obtained on a standard MacBook Pro with a 2.4 GHz Intel Core 2
Duo processor and 2GB of memory. There is actually no general problem with Example 9, only LEO-
II performs particularly poorly on it and the reasons for this should be investigated. Tests with other
HO-ATPs via the SystemOnTPTP tool confirm that IsabelleP, for example, finds a proof in 10s.

6The THF0 translation of SUMO is available at: http://www.ags.uni-sb.de/~chris/papers/SUMO.thf.
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We have submitted 28 related examples, each in two or three different versions, to the TPTP for
inclusion. The different versions are corresponding to the three modes for calling LEO-II in Sigma
as discussed before. Recent experiments of Geoff Sutcliffe with his TPTP infrastructure indicates that
LEO-II is slightly ahead of the other provers for these example problems. The important news, however,
is that the main hypotheses of our work has been confirmed: higher-order automated reasoners have the
potential to advance the state-of-art in ontology reasoning and question answering. This has also been
confirmed by the detection (and subsequent fixing) of some problematic axioms in SUMO in the course
of our experiments. For example, in the following axiom for ‘pretending’ the last occurrence of True has
been detected as semantically wrong and was subsequently replaced by False (‘pretending’ is is a social
interaction where a cognitive agent or group of cognitive agents attempts to make another cognitive agent
or group of cognitive agents believe something that is false):

(=> (instance ?PRETEND Pretending)

(exists (?PERSON ?PROP) (and (hasPurpose ?PRETEND (believes ?PERSON ?PROP))

(truth ?PROP True))))

Moreover, not only HO-ATP theorem provers are applicable to support ontology reasoning but also
higher-order model finders. The IsabelleN model finder, for example, has revealed several typos in earlier
versions of our example problems by constructing countermodels.

On the downside, however, our tests also show that much further work is needed for turning our
proof of concept into a practically reliable and robust success story. For example, only very few of our
examples can currently be solved in the SInE mode and even less can be solved in the global mode.
Hence, the challenges involved in making inference efficient over large theories turns out even worse for
the HO-ATPs than it already is for the FO-ATPs. This was to be expected though, in particular, since
the theoretical and technical maturity of HO-ATPs is still many years, if not decades, behind those of
FO-ATP systems.

6 Discussion

In this paper we have shown that HO-ATP is in principle capable of advancing the state-of-art in ontology
reasoning and question answering in expressive frameworks such as SUMO. There are many open issues
though that require much further thought and work. We briefly discuss a few.

The large theories challenge requires the development or adaptation of strong relevance filters such
as SInE. We are still using an older version of SInE and we speculate that the latest version, in which
the maximal number of selected axioms can be predetermined by a parameter, may already significantly
improve the performance of the HO-ATPs in SInE mode.

There is also an important meta-reasoning task to be solved for Sigma. Currently, the selection of
reasoners and further options is task of the user. In the future, however, we plan to automate this task.
We envision distributed, possibly even cooperative, proof attempts by reasoners working for different
translation targets like TPTP FOL and TPTP THF. Hence, the intended meta-reasoner needs to support
various non-trivial tasks including: (i) selection of appropriate reasoners and translation targets, (ii)
relevance filtering, (iii) control of (distributed) prover execution, (iv) extraction of answers from prover
results, (v) result verification, (vi) preparation of answers and their presentation to the user.

For several of these tasks existing technology can possibly be adapted. Answer extraction, for ex-
ample, is already supported in Sigma for all first-order provers which obey the standardized TPTP proof
output format. And for supporting distributed or even cooperative reasoning with external systems in
Sigma the agent-based OANTS architecture [12] can possibly be adapted.
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One of the most interesting and relevant challenges, however, is the modalities challenge. As we have
shown, Boolean extensionality and epistemic modalities such ’knows’ or ’believes’, for example, do not
go well together. This observation is relevant beyond the borders of SUMO and it clearly also affects the
current first-order translations: if they will eventually be extended so that they can successfully handle
Examples 4 and 5, then they will also face the problem of Example 8.

Traditional (propositional) modal logics approaches and reasoners seem hardly applicable for the task
since the modalities are usually employed in SUMO in combination with other first-order and higher-
order constructs. One of our current research directions therefore aims at exploiting recent results that
show how (multi-)modal logics can be elegantly encoded as simple fragments of higher-order logics
[9, 8]. The idea is to consider modalities such as ’knows’ or ’believes’ as abbreviations for lambda-
terms (as presented in [9]) denoting the appropriate modal operators. This solution explicitly supports
the coexistence of different modalities in combination with other first-order and higher-order constructs.
Related case studies on epistemic reasoning (for example, an elegant and efficient solution of the Wise
Men Puzzle) with classical, extensional higher-order theorem provers can be found in [6].

We may also consider a modification of the theorem prover LEO-II and its underlying calculus.
The idea would be to provide means for annotating function and predicate symbols regarding their
pre-determined extensionality properties and to distinguish in the inference process according to these
annotations. holdsDuring, for example, would be annotated as fully extensional, while knows and
believes would not. Hence, the inference in Example 8 could be blocked in the prover while Exam-
ple 5 would still go through. A respective research proposal in such a direction can already be found in [5]
(which unfortunately was not funded at the time). Such a solution would allow us to make an informed
and context-dependent choice regarding the extensionality principles for the semantics of SUO-KIF.
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