
Sigma: An Integrated Development Environment for
Formal Ontology

Adam Pease, Christoph Benzmüller1

1 The second author has been funded by the German Research Foundation under grant BE 2501/6-1.

Abstract. Sigma is an open source environment for the
development of logical theories. It has been under development
and regular release for nearly a decade, and has been the
principal environment under which the open source Suggested
Upper Merged Ontology (SUMO) has been created. We discuss
its features and evolution, and explain why it is an appropriate
environment for the development of expressive ontologies in
first and higher order logic.

1 INTRODUCTION

We should first discuss what we mean by a formal theory or
formal ontology, as we use these terms interchangeably in this
paper. For our purposes, these are mathematical entities, that are
collections of statements made in a language with a formal
semantics. The use of the word "ontology" may be a source of
some confusion in computer science as it has been applied to so
many sorts of information models that it can be almost
meaningless. In particular, things which have previously been
called schemas, taxonomies, semantic networks or object models
have now been branded "ontologies". A key distinction for us is
whether a given model has a definition in a formal language that
allows each term to be interpreted without recourse to human
intuition about its meaning based on the name of the term or
natural language documentation about the term. Semantic web
taxonomies, for example, describe their terms formally only up
to isomorphism in a subclass hierarchy and typically add
informal natural language comments to further characterize the
intended definitions.

There have been many environments created to support
ontology development [25] (in the loose sense of the phrase).
The one most comparable to Sigma is the Cyc system [46],
which like SUMO, includes a large ontology. Cyc contains a
single inference engine, and is not open source, which limits the
ability to make meaningful comparisons with other tool sets.
While there are few tools comparable to Sigma in total, there are
many tools which are related to the various components of
Sigma and these are discussed in more detail in the section
below on related research, along with references to major frame-
based ontology editing tools.

The majority of ontology development tools, at least in recent
years, have been created to support creation of lightweight
taxonomies in the OWL language [21]. The most popular
system for developing OWL, even though it pre-dates the
development of that language, is Protege [45]. Developers who
are familiar with languages of that sort often expect that there
would exist ontology development tools that support graphically-
based authoring for other languages.

There are a limited number of language constructs in a frame-
based or description-logic language. Frames have class
membership and slots. Slots can have values and restrictions.
The primary language construct is the taxonomy, which lends
itself easily to tree-based views and editors. This is similar to
object oriented language IDEs that typically have tree views for
the object hierarchy, and may have visual editors that allow the
user to quickly create shells of code, based on the object
taxonomy. Many ontology developers start by developing their
products in a lightweight ontology editor that handles frame-
based languages. Ontology developers who are used to that
paradigm may wonder why Sigma does not offer an editing
component as the primary method for developing ontologies.
Most modern software engineering however takes place in a text
editor. Tools are an important part of the development process,
and can help improve both productivity and quality. But the
complexity of a modern programming language prevents modern
software development from being reduced to simple forms entry
and visual editors.

Modern and expressive languages for the development of
formal theories, such as SUO-KIF [19] and TPTP [14] have a
similar degree of expressiveness, in a broad sense, to a modern
programming language. For that reason, we believe that the
appropriate role for a knowledge engineering environment is in
browsing, inference, analysis and other functions, rather than, at
least primarily, authoring and editing. A simple taxonomy and
slot-value filling interface however would be useful for fast
prototyping and will be added to Sigma in the future.

There is promise in creating editing modes for text editors
appropriate for knowledge engineering, such as with the
ProofGeneral environment [26]. One challenge however is that
the choice of a text editor, is, for a professional programmer, a
very personal, and often a very strongly held preference. To the
extent that knowledge engineers are also programmers, it will be
difficult to create any environment so compelling that it will
cause them to switch text editors. One alternative would be to
capture just a portion of the "market" by working to add
appropriate modes to just one text editor. Another would be to
apply very significant resources, that do not appear yet to exist in
the marketplace, to create modes in several powerful editors.
For these reasons also, we have focused on tools other than text
editing modes.

Also in keeping with a modern software development model,
we have utilized the Concurrent Version System (CVS) for
collaborative ontology development. Developers are typically
given authority over one or more ontologies, required to check in
progress at least weekly so that other developers can sync up
with their changes. This has also resulted in a detailed public
record of the development and evolution of the Suggested Upper
Merged Ontology (SUMO) [3,22].

While Sigma [1,2] was created to support SUMO, and that
has been its primary use during some eight years of
development, that is by no means the only theory that it can
handle. Sigma works on knowledge bases that can be composed
from various files selected by the user. Those files can be coded
in a small number of different formal languages, including TPTP
and OWL, as well as SUO-KIF. The Sigma user can easily work
with very small theories or very large ones by composing only
the theories that are needed for the work at hand. A typical use
of Sigma would involve loading just the upper level of SUMO
and whatever domain theory is needed for the user's chosen
application area.

Tools within Sigma (Figure 1) can be broadly segmented into
several groups, (1) browsing and display, (2) analysis and
debugging, (3) inference, and (4) mapping, merging and
translation. We describe each of these topics in the following
sections, but first give a very brief introduction to the SUMO,
which is the logical theory Sigma was initially developed to
support. We include sections at the end of the paper which
discuss the typical workflow in the use of Sigma and SUMO and
also presents a concrete application scenario.

2 SUMO

The Suggested Upper Merged Ontology [3,10] began as just
an upper level ontology encoded in first order logic. The logic
has expanded to include higher order elements. SUMO itself is
now a bit of a misnomer as it refers to a combined set of
theories: (1) the original upper level, consisting of roughly 1000

terms, 4000 axioms and including some 750 rules. In this paper,
we'll refer to this portion of SUMO as SUMO "proper". (2) A
MId-Level Ontology (MILO) of several thousand additional
terms and axioms that define them, covering knowledge that is
less general than those in SUMO. We should note that there is
no objective standard for what should be considered upper level
or not. All that can be said (simplistically) is that terms
appearing lower in a taxonomy (more specific) are less general
than those above. To avoid pointless argument about what
constitutes an "upper level" term, we simply try to keep SUMO
about 1000 terms with their associated definitions, and any time
content is added, the most specific content, as measured by its
having the lowest level in the subclass hierarchy, is, if necessary,
moved to MILO or a domain ontology. (3) There are also a few
dozen domain ontologies on various topics including theories of
economy, geography, finance and computing. Together, all
ontologies total roughly 20,000 terms and 70,000 axioms. We
might also add a fourth group of ontologies which are theories
that consist largely of ground facts, semi-automatically created
from other sources and aligned with SUMO. These include
YAGO [4], which is the largest of these sorts of resources
aligned with SUMO and has millions of facts.

SUMO is defined in the SUO-KIF language [19], which is a
derivative of the original Knowledge Interchange Format [20].

SUMO proper has a significant set of manually created
language display templates that allow terms and definitions to be
paraphrased in various natural languages, including non-western
character sets. These include Arabic, French, English, Czech,
Tagalog, German, Italian, Hindi, Romanian, and Chinese
(traditional and simplified characters). Automatically generated
natural language paraphrases can be seen in the rightmost
column of the screen display given as Figure 2.

Figure 1: Major Sigma Functions

Take for example that we have the SUO-KIF statement that

(authors Dickens OliverTwistBook).

We have the following statements that have been coded to
support the paraphrasing of statements with the authors
relation.

(format EnglishLanguage authors
 "%1 is %n the &%author of %2")

(format it authors "%1 è l' &%autore di %2")

Terms are also given language-specific strings, when appropriate

(termFormat EnglishLanguage OliverTwistBook
"Oliver Twist")

If a Sigma user has loaded this information in a knowledge
base, and English is selected as the presentation, the user will see

"Dickens is the author of Oliver Twist." next to the SUO-KIF
statement. If Italian is selected, the paraphrase will be "Dickens
è l'autore di Oliver Twist". Arguments to predicates are
recursively substituted for the %1, %2 etc parameter variables,
allowing much larger expressions to be constructed from more
complex logical expressions. The %n refers to the word for
negation in the given language, and is inserted if the formula is
negated. For example

(not (authors RobinCook WarAndPeace))

is rendered as "Robin Cook is not the author of War and Peace."

Figure 2: Sigma browsing screen

3 SUMO and WordNet

SUMO has been mapped by hand to the entire WordNet [27]
lexicon [5]. WordNet consists of over 100,000 linguistic senses
called "synsets" (synonym sets). For example, one WordNet
synset is

mouth, speak, talk, utter, verbalise, verbalize: express in
speech; "She talks a lot of nonsense"; "This depressed
patient does not verbalize"

Initially, each term in SUMO proper (the 1000 term upper
level of SUMO) was mapped, and in later phases all WordNet
synsets appearing above a frequency threshold in the Brown
Corpus [7,8] were mapped to a roughly equivalent term in
SUMO's lower level ontologies. If a rough equivalent didn't
exist, one was created and defined. One caveat is that some
words in English are vague enough to defy logical definition, or
only have meaning within the context of a sentence, so some
such words still lack direct equivalences.

For example, take the word "bright" in the sense of "full of
promise". In the context of "John has a bright future. He was
selected for the varsity basketball team as a freshman." the word
means that he is better at basketball than many of his high school
classmates. In other contexts it might mean that he is more
likely to recover from an orthopaedic injury than other patients
of a similar demographic, or that he's likely to become president.
A simple word-to-term relationship is not enough, and
something more sophisticated would be needed to create a
specification of meaning that is related to context. Contrast this
with "walking" in the sense of ambulation. It is relatively
straightforward to give some degree of formal definition the

notion of "walking" as an individual term in a hierarchy of
processes and differentiated from "running", "crawling",
"driving" etc.

While this paper is not principally about the SUMO-WordNet
mappings, it is worth stating at least briefly that the two products
have very different roles. SUMO is a formal ontology, stated in
a particular mathematical logic with associated inference
engines. It contains rules that allow it to be used in logical
deduction. SUMO is – to the best of the ability of current
theorem provers to determine – logically consistent, and we
continuously strive to find and eliminate inconsistencies with
improved theorem proving technology. SUMO is a product
constructed intentionally by humans. New terms and definitions
can be added at will to model reality and do not need to mirror
the presence (or absence) of linguistic tokens in any human
language.

In contrast, WordNet is a lexical database of English. Lexical
tokens are collected from the use of English and may not be
arbitrarily created by the WordNet developers. Lexical tokens
are not formal, mathematical entities. Words can be vague and
ambiguous. Many words cannot be given formal definitions.
The semantic relations of WordNet are not necessarily truth
preserving through an arbitrary number of links. With a very
small number of available semantic relations a number of logical
notions are necessarily conflated. For example (see Figure 3), in
WordNet, "plumber" is a type of "human" despite that being a
transient role that is not true throughout the life of any plumber,
whereas "ape" is a type of "primate" and that fact is indeed true
throughout the life of any ape. WordNet considers a "plumber"
to be a "human", whereas SUMO considers plumber to be an
occupational position, and therefore an attribute that holds true
about a particular human at a particular time.

The "role" relation (appropriate for relating individuals and
kinds of jobs) is different from the "type" relation (relating a
general class of things to a more specific class of things). One
might argue that WordNet should simply add a new semantic
relation of "role". However, there are thousands of such
relations. Do all of them get added to WordNet?

We should note that this example, and many others that could
be cited are not criticisms of WordNet. WordNet is designed to
represent language, not a logically consistent reality. The
"hyponym/hypernym" relation is intended to represent linguistic
notions, especially the "substitution test" which allows more
general words to be substituted for more specific words in a
sentence without making a sentence nonsensical.

Most importantly, SUMO has an entirely open set of
statements that can be made involving multiple concepts. Where
the set of WordNet semantic relations is limited to just a fixed
and small set of binary relations that are linguistically justifiable,
SUMO has an open set of thousands of relations, and rules
which combine sets of arbitrary numbers of terms in complex
and productive ways that are capable of expressing the full set of
facts that govern our reality. WordNet is appropriate for
modelling language. SUMO is appropriate for modelling truths
about the world.

Having SUMO and WordNet as distinct but linked products
allows us to separate language and logic and not have linguistic
concerns impact the representation of reality, or the goal of
representing the world disturb the accurate representation of
human language as written and spoken. Having linked these

Figure 3: Comparing hierarchies of SUMO and WordNet

different resources allows us a rich basis for understanding
language [33].

The Global WordNet effort [6,9] links lexicons in many
languages, following the same model of computational lexicon
development as the original English WordNet. Wordnets have
now been developed for some 40 languages. This rich set of
cross-linguistic links that includes SUMO has the promise of
being the basis for much work in language translation and
linguistics generally. A simple idea for taking advantage of
some of this work would be to expand the set of language
translations for individual terms available for SUMO.

4 BROWSING and DISPLAY

Sigma was originally just a display tool. Its original, and still
most heavily used function, is for creating hyperlinked sets of
formatted axioms that all contain a particular term (Figure 2).
Clicking on a term in turn gives a hyperlinked display of all the
axioms that contain the new term. Next to each axiom is given
the file and line(s) where the axiom was written. Also shown is
an automatically generated natural language paraphrase of each
axiom. The mechanism in Sigma for language generation is
simple, but with a very large ontology used as the source of
language generation the richness and coverage of the resulting
statements is still significant. Much productive work remains to

extend the functionality of this component to take into account
the latest work in language generation. In particular, significant
improvement would come from natural use of prepositions in
paraphrasing statements about actions and the participants in
actions.

In 2008 we added a simplified browser view (Figure 4) that
may be more appropriate for users who are transitioning from
use of frame and description logic languages. It gives
prominence to a tree view of the subclass hierarchy and presents
binary relations in a simple tabular format, relegating rules to an
area lower in the browser pane, and rendering them in the natural
language paraphrase form only.

Sigma includes a tree browser display. In contrast to many
ontologies developed in frame languages, SUMO has several
hierarchies that can be used to organize and display the theory.
These include hierarchies of physical parts, relations, attributes,
processes and others. As such, the tree browser allows the user
to select any transitive binary relation as the link by which the
hierarchy display is created.

In 2007-2008 a significant effort was undertaken to find open
source images that could be linked to provide an informal visual
representation of as many of the concepts in SUMO as possible.
Some 12,000 links were made by hand to public domain icons
and images in Wikipedia. In 2009 Princeton University
published results of a project to link images to WordNet.

Figure 4: Simplified browser view

Although the links are public, many of the images in their corpus
do not have an open license. We looked only at those images
linked to WordNet synsets that have a rough equivalence
mapping to SUMO terms. As a result of both restrictions, only
900 images which were linked to Wikipedia in Princeton's
ImageNet [28] corpus were imported.

5 ANALYSIS and DEBUGGING

Sigma includes a number of specialized and general tools for
ensuring ontology quality. The ultimate tool for quality
checking on a formal ontology is formal reasoning. However, in
expressive ontologies, such as SUMO, we can generally not
expect that all contradictions can be detected with theorem
provers or that consistency can be formally proved (note, for
example, that Peano arithmetic can be formalized in SUO-KIF).
But that does not rule out that such goals can nevertheless be
achieved for many concrete theories, in particular, such theories
which do not make use of the full expressive power of SUO-
KIF. Sigma therefore provides different tools for quality
checking, combining exhaustive and terminating special purpose
tests with incomplete and generally non-terminating general
purpose testing based on theorem proving or model finding.

 Moreover, a large theory may be inconsistent while still
being used for practical theorem proving and question
answering. It is not desirable, but just a fact of life. A theory is
either consistent or not, but just because a theory potentially
contains some hidden inconsistency, this does not mean that this
inconsistency will influence any given proof in practical
applications of the ontology (if so, then it is also more likely that
the inconsistency can in fact be detected and eliminated in the
first place by theorem proving and model finding means). And
even if this happens in rare cases, then there is still the
possibility to check the delivered proof or argument by hand and
to reject it based on this a posteriori verification. Inconsistencies
may theoretically linger undetected for years and may never
become practically relevant.

We will discuss theorem proving in the following section, so
in this section we describe the various special case tests that we
have found to be useful, and included in Sigma. While the
number of possible tests is potentially infinite, there are a
number of common problems that result from errors that are easy
to make. The special case tests aim to cover these most common
cases.

There are two special case tests for errors that must be
corrected. We test for terms without a root in the subclass
hierarchy at the term Entity, which is the topmost term in
SUMO. This commonly results from either omitting a subclass
or instance statement when defining a new term, or by
misspelling the name of the intended parent term. The second
special case test is for where a term has parents that are defined
to be disjoint. In a large theory like SUMO, it can be easy to
lose track of this case, especially when the ultimate conflict may
be between terms that are many levels up in the subclass
hierarchy.

There are also a number of tests for cases that are indicative
of a problem, yet not strictly an error that would result in a
logical contradiction. The first of these is for terms lacking
documentation. In theories under construction, theories that are
the results of importing and merging another ontology, or simply
for large lists of domain instances, like city names, it may be

reasonable, temporary, or expected for such terms to lack
documentation. But this does often reflect an outright error,
where a term name was simply misspelled in the documentation
definition, or in some other axiom.

We test for cases where terms do not appear in any rules.
This again is common in collections of instance-level facts, but
undesirable for many classes or relations, where it should be
possible to define precisely the intended meaning of the term
with a small number of formal rules, as well as statements like
class membership.

Because knowledge bases are often composed from SUMO's
general and domain specific component ontologies, it is
desirable to limit dependencies among the files as much as
possible. For that reason we include a tool to specify
dependencies between pairs of files. It is typically most
desirable at least to ensure that dependencies are only from one
file to another, and not between both files. All domain files will
of course depend at least upon SUMO proper, since they form a
single integrated theory that is decomposed into separate files for
convenience and efficiency of inference.

A further test exploits the SUMO-WordNet mappings. They
offer the opportunity to find problems exposed by differences in
the two products. As discussed above, we believe that the two
hierarchies should not necessarily be isomorphic, and therefore
respective differences do not necessarily mark an error.

In the diagnostics provided for the SUMO-WordNet
mappings. Sigma finds WordNet synsets without mapped formal
terms and those for which a formal term is provided, but is not
found in the current loaded knowledge base. This helps to find
cases where terms have been changed or renamed and the
mappings not updated. Most significant is the taxonomy
comparison component. Given that we have terms A and B in
SUMO and synsets X and Y in WordNet, if A is mapped to X
and B to Y, Sigma checks whether if B is a subclass of A then Y
is also a hyponym of X. The reverse case is also checked. An
example of a mismatch in the two hierarchies is shown in Figure
3.

6 INFERENCE

Sigma can be used as a whole for theory development,
employing its inference component in the service of testing and
debugging a theory. The inference portion of Sigma can also be
used as an embeddable component in applications involving
reasoning. An example application, the generation of stories for
small children, will be discussed in detail in section 11 below.

The inference interface of Sigma consists primarily of two
Java methods: ask, and tell. Clients tell statements in SUO-KIF
to the knowledge base and then ask queries in SUO-KIF (along
with some performance parameters such as the amount of time
allowed for finding an answer). The result of tell, if an answer is
found, is a binding for any free variable in the query, along with
a formal proof of how the answer was determined. In the story
generation application, those bindings are then used to construct
other queries or assertions.

Since 2003, Sigma has used an open-source, customized
version of the Vampire [29] theorem prover called KIF-Vampire.
Our experience with practical knowledge base systems has
shown that there are several features that are often needed, yet
also usually absent from high performance theorem provers. In a
typical use case in decision support applications, a user wants to
be able to pose many queries to a knowledge base where most of
the knowledge does not change from query to query, and where
the set of available knowledge is quite large. The user expects to
get an answer to a query, to be able to specify a timeout for
difficult queries, and request multiple answers to the same query,
if available. The user expects to get some information that
justifies why an answer is true. Performing basic arithmetic as
part of inference is also desirable and even necessary for many
common sense inferences. Each of these features needed to be
added to Vampire by researchers at University of Manchester, to
create the new KIF-Vampire.

Because SUMO has contained a limited number of higher
order constructs, and Vampire is strictly a first order prover, we
have employed a number of pre-processing steps to translate
SUMO into the more limited strict first order interpretation that
Vampire (and other provers) can handle. The same

transformations are needed for the TPTPWorld interface, along
with an additional set of transforms (Figure 5). We will first
discuss the pre-processing steps and then address post-
processing

We have implemented two approaches for the first step of
removing variables from the predicate position. Our first
approach was to add a "dummy" predicate to all clauses other
than those with logical operators. For example, the following
axioms,

(instance part TransitiveRelation)

(<=>
 (instance ?REL TransitiveRelation)
 (forall (?INST1 ?INST2 ?INST3)
 (=>
 (and
 (?REL ?INST1 ?INST2)
 (?REL ?INST2 ?INST3))
 (?REL ?INST1 ?INST3))))

become

(holds instance part TransitiveRelation)

(<=>
 (holds instance ?REL TransitiveRelation)
 (forall (?INST1 ?INST2 ?INST3)
 (=>
 (and
 (holds ?REL ?INST1 ?INST2)
 (holds ?REL ?INST2 ?INST3))
 (holds ?REL ?INST1 ?INST3))))

This however resulted in worse performance for theorem provers
that give special indexing priority to the predicate when
searching the proof space. The second approach was to
instantiate every predicate variable with all possible values for
predicates in the knowledge base that meet the type restrictions
that may be implied by the axiom. The rule above will be
duplicated with the variable ?REL being instantiated with every
TransitiveRelation as in

(=>
 (and
 (part ?INST1 ?INST2)
 (part ?INST2 ?INST3))
 (part ?INST1 ?INST3))

This results in an automated expansion of the number of axioms,
but does give good performance. One limitation however is that
the semantics of predicate variables is thereby limited to the set
of predicates existing in the knowledge base, rather than ranging
over all possible predicates.

In the next preprocessing step we turn embedded formulas
into uninterpreted lists of symbols by quoting them. This
removes most of the semantics of such statements, including the
semantics of logical operators, but does at least allow for
unification, thereby giving the appearance of higher order
reasoning in very limited situations.

For example,

(believes John (likes Mary Jeff))

becomes

(believe John `(likes Mary Jeff))

This allows KIF-Vampire to perform very simple queries on
higher order statements, such as

Figure 5: Sigma pre- and post-processing steps

(believes John `(likes Mary ?X))

and get the correct answer of Jeff. However, logical symbols
in the embedded formulas lose their meaning, so if

(believes John
 '(and
 (likes Mary Jeff)
 (likes Bill Sue)))

is asserted, the same query will fail, as the and does not have its
conventional meaning, and the two lists will not unify.

In a simple third step, Sigma translates SUMO basic
arithmetic functions into the native symbols required by KIF-
Vampire. For the fourth preprocessing step we note that SUMO
includes row variables [11], which are akin to the LISP @REST
reference for variable-arity functions. We treat these as a
"macro" and expand each axiom with a row variable into several
axioms with one to seven variables for each occurrence of a row
variable. This macro expansion approach does change the
semantics of row variables, simplifying the logic and improving
its computational properties. This limitation however does not
appear to have adverse practical consequences for common-
sense knowledge representation, which is the goal of SUMO.

To explain what is done, take the following example, where
the axiom

(=>
 (and
 (subrelation ?REL1 ?REL2)
 (?REL1 @ROW))
 (?REL2 @ROW))

becomes

(=>
 (and
 (subrelation ?REL1 ?REL2)
 (?REL1 ?ROW1))
 (?REL2 ?ROW1))

and

(=>
 (and
 (subrelation ?REL1 ?REL2)
 (?REL1 ?ROW1 ?ROW2))
 (?REL2 ?ROW1 ?ROW2))

etc. up to the maximum arity currently allowed of 7. Note that in
axioms such as this, which also require predicate variable
instantiation, we must restrain the expansion to only those arities
which are compatible with the instantiated predicates. For
example, located is a subrelation of partlyLocated and
both have arity 2. So, @ROW will only be expanded to the case of
two variables. In the few cases where axioms have two row
variables, this can result in 49 new axioms.

Since we wish to keep Sigma as a completely open source
system, we have not been able to upgrade to subsequent versions
of Vampire, which are not open source, resulting in an inference
component that is now somewhat out of date with respect to the
state of the art. We have worked to integrate the TPTPWorld
suite that has many different theorem provers, all operating
under a common interface [12]. The different provers do
however have different performance characteristics, and some do
not provide proofs, so using this component does require a bit
more expertise along with more choice. It also offers the
capability to use the servers at the University of Miami to

remotely run the user's inferences, which can be beneficial for
those who may not have powerful computers at their location.

Integration with TPTP added a new first order language
capability to Sigma for ontology reading and for export [13]. It
also highlighted a limitation of Sigma until that point. Although
SUMO has types defined for all relations, the logic itself is not
typed. That meant that provers would not necessarily take
advantage of type restrictions in limiting their search space, and,
in certain cases, this could result in incorrect inferences, when
inappropriate types were applied in finding solutions to queries.
A theorem prover was free to use inappropriate types and then
find a contradiction with SUMO's type restrictions, resulting in
an inconsistent knowledge base. To solve this problem, we
added a 5th step to the Sigma pre-processor, which adds type
restrictions as a new precondition to every rule. These type
restrictions are deduced by collecting the most specific type
restriction implied by the use of each variable as the argument to
a relation in the given axiom.

For example, consider the rule

(=>
 (and
 (instance ?TRANSFER Transfer)
 (agent ?TRANSFER ?AGENT)
 (patient ?TRANSFER ?PATIENT))
 (not
 (equal ?AGENT ?PATIENT)))

All relations in SUMO are typed. While we have an explicit
type stated for ?TRANSFER, none is given in the rule for ?AGENT
and ?PATIENT. However, we know from the definitions of
agent and patient that their second arguments are given
respectively as

(domain agent 2 Agent)
(domain patient 2 Object)

We can then modify the rule to add a new precondition with
those type restrictions.

(=>
 (and
 (instance ?AGENT Agent)
 (instance ?PATIENT Object))
 (=>
 (and
 (instance ?TRANSFER Transfer)
 (agent ?TRANSFER ?AGENT)
 (patient ?TRANSFER ?PATIENT))
 (not
 (equal ?AGENT ?PATIENT))

Combining these different preprocessing operations with the
capability to generate TPTP language versions of SUMO
allowed us to use SUMO-based tests in the yearly CASC
competition [14,15], stretching theorem prover developers to
work on high performance results in a new category of problems
in which inferences of modest difficulty must be done on a very
large knowledge base, where only a small number of axioms are
relevant to a given query. A key recent innovation is the SUMO
Inference Engine (SInE) [16], which selects only the subset of
axioms likely to be relevant for a given query.

In addition to preprocessing, some post-processing is needed
for all theorem provers that are used in Sigma. All the TPTP
provers that report full proofs, as well as KIF-Vampire, present
and ordered list of deductions, where premises are given and

then a conclusion. In presenting a proof to the user (Figure 6),
we would like to avoid showing the same axiom many times if it
is used in several proof steps. We therefore assign a numerical
index to each axiom, in order of its appearance in the proof. The
indexes can then be referenced when they are preconditions to a
listed step, making the proof appear more similar to what a logic
student will be used to from a standard textbook presentation of
a proof.

An answer variable is a binding for a variable in a query that
is unbound. In the proof shown in Figure 6 ?X is an unbound
variable in the query. For TPTP systems that do not report
answer variables, or handle more than one answer per query, a
more complicated approach is needed. For systems such as EP,
that report proofs but not answer variables, the axioms in the
proof are resubmitted to the Metis prover [30] which does report
answer variables. Multiple answers are found by resubmitting
the query with a new clause added that excludes previous

answers. For the example query shown, in order to get the
second answer, the new query would become

(and
 (instance ?X PrimaryColor)
 (not
 (equals ?X Red)))

At the boundary of diagnostics and inference we have the
general case of using theorem proving to find contradictions.
Because first order proving is not guaranteed to find all problems
that may exist in SUMO, Sigma includes a consistency check
function that leads the theorem prover to consider each axiom in
a knowledge base. This is an important point because a user may
have a knowledge base that is inconsistent, but in practice may
make many useful inferences over a long period of time while
never having the problem show up in a proof. For example, take
the knowledge base

Figure 6: Proof presentation in Sigma

(fatherOf John Bill)
(fatherOf John Mark)

(=>
 (fatherOf ?X ?Y)
 (and
 (not
 (exists (?Z)
 (and
 (fatherOf ?X ?Z)
 (not
 (equal ?Y ?Z)))))))

While this knowledge base is trivially small, imagine that there
are tens or hundreds of thousands of other statements, many of
which may involve the predicate symbol fatherOf. A
complete examination of the proof space is impossible. Imagine
that the user poses the query

(fatherOf John Bill)

Given a finite and small amount of time with which to find an
answer, the prover may just find and return "yes" after
encountering the first assertion. It may not continue the search
process to find the contradiction. In fact, given a large and
complex enough knowledge base, and a complex enough
contradiction, it might not be found for years.

To help guide the search for contradictions, Sigma takes each
axiom, which is loaded one by one starting with an empty
knowledge base. For each axiom, the prover is asked to compute
whether the knowledge base contradicts the axiom, or is
redundant with it. If the axiom doesn't create a contradiction, it
is asserted to the knowledge base and the next axiom is
considered. A contradiction will stop processing, since once a
contradiction is found, any further results may be nonsensical
(although the answer also may not be nonsensical, as we have
explained, so this is a conservative approach).

Once processing finishes, redundancies are collected and
reported. At its simplest, a redundancy can be a duplicated
statement, and that is clearly an error. Although initially
harmless, having the same statement in two places can easily
lead to problems as an ontology evolves, as one statement might
get changed while a duplicate does not. For example, a
developer might forget that a domain ontology file already has a
statement

(subclass Table Furniture)

and assert the same statement in a different file.
A more complex case is where one statement is simply

deducible from several others. This is often intentional, as
knowledge engineers may wish to short-circuit a common chain
of reasoning in order to have faster inference. Such a case is
even more likely to suffer from the problem of changes not being
reflected in the chain of deductions, and the redundant
conclusion. For example,

(=>
 (instance ?P TransitiveRelation)
 (=>
 (and
 (?P ?A ?B)
 (?P ?B ?C))

 (?P ?A ?C)))

(subclass Table Furniture)

(subclass DiningTable Table)

(subclass DiningTable Furniture)

(instance subclass TransitiveRelation)

An intriguing possibility in contradiction detection would be
to continue processing, knowing that the theorem prover may not
run across the knowledge needed to prove a contradiction for a
different query. We might also explore treating an inconsistent
knowledge base in a four-valued logic, where each axiom can be
provably true, false, both or one or the other [31]. We might also
explore whether an automatic process can be created to remove
random axioms from a proof of contradiction, checking to see
whether a contradiction can still be found, and reporting the
deleted axiom to the user when it is not. This may assist the user
in determining the appropriate correction to make by finding a
subset of the axioms in the proof of contradiction that appear to
be most responsible.

Similar to the CASC competition, but on a much smaller
scale, Sigma has the capability to run a series of SUMO-based
tests for any theorem prover it supports, reporting success or
failure and the time taken on each test.

7 HIGHER ORDER LOGIC

Another recent innovation is in translating SUMO to the new
typed higher order format TPTP THF [18] for use by true higher
order theorem provers [17,44]. The goal of this work is to better
support higher order aspects in SUMO, in particular, embedded
formulas, temporal operators such as “holdsDuring“ and
epistemic operators like “knows“ and “believes”. The first-
order based support for these concepts in Sigma is limited, with
the effect that many desirable inferences are not supported,
certain queries cannot be answered, and some potential
inconsistencies cannot be detected. The following example on
reasoning within temporal contexts illustrates the challenge. It
expresses that whatever holds, holds at all times, that Mary likes
Bill, and that during 2009 Sue liked whoever Mary liked.

(=>
 ?P
 (holdsDuring ?Y ?P))

(likes Mary Bill)

(holdsDuring
 (YearFn 2009)
 (forall (?X)
 (=>
 (likes Mary ?X)
 (likes Sue ?X))))

A higher order theorem prover such as LEO-II [35], which has
been integrated into Sigma, can now effectively (in about a tenth
of a second) answer, for this knowledge base, queries like
whether Sue liked Bill in 2009.

 (holdsDuring
 (YearFn 2009)
 (likes Sue Bill))

 or whether there is a year in which Sue has liked somebody.

 (holdsDuring
 (YearFn ?Y)
 (likes Sue ?X))

The rule (=> ?P (holdsDuring ?Y ?P)) can also be
replaced by (holdsDuring ?Y True), and LEO-II finds an

answer even more quickly. At the same time, this example is out
of reach of the first order reasoning techniques described above.
 A key aspect in the solution of the example is Boolean ex-
tensionality, which ensures that the denotation of each formula,
and also of the embedded ones, is either true or false. This
assumption has actually never been questioned for SUMO.
However, assuming Boolean extensionality also leads to
problematic effects as the following slight modification of the
example illustrates (instead of the temporal context we now
consider an epistemic context).

(knows ?Y True)

(likes Mary Bill)

(knows
 Ben
 (forall (?X)
 (=>
 (likes Mary ?X)
 (likes Sue ?X))))

It is not a surprise that, given this knowledge base instead of the
previous one and by using a similar reasoning pattern as before,
LEO-II can effectively confirm the query

(knows Ben (likes Sue Bill))

However, this inference is disturbing since we have not
explicitly required that (knows Ben (likes Mary Bill))
holds, which intuitively seems mandatory.2

Our example illustrates, that modalities have to be treated
with great care in classical, extensional logic. Our ongoing work
therefore studies how we can suitably adapt the modeling of
affected modalities in SUMO in order to appropriately address
this issue.

The solution we currently explore is to map SUMO reasoning
problems that involve modal operators to problems in quantified
multi-modal logics. Unfortunately there are only very few direct
theorem provers for quantified multimodal logics available. We
therefore exploit our recent embedding of quantified multimodal
logics in classical higher order logic [39] and we investigate
whether this embedding can fruitfully support the automation of
modal operators in SUMO with off-the-shelf higher order
automated theorem provers.

Our ongoing research studies how non-classical reasoning can
generally be integrated with and realized in classical higher order
logic and how higher order theorem provers and model finders
can be utilized for the task. So far we have studied propositional
modal logics and propositional intuitionistic logics [36], access
control logics [37], quantified modal logics [39], and conditional
logics [40]. Most importantly, combinations of these logics can
be achieved in classical higher order logic [38], which is what
we ultimately need in order to address challenge interactions of
modal operators in SUMO.

9 MAPPING, MERGING and TRANSLATION

In addition to SUO-KIF and TPTP syntax, Sigma can also read
and write OWL format [21]. Since many lightweight ontologies
are currently being created in OWL, this feature opens up the use
of Sigma to a large community, and provides a straightforward

2It is important to note that True in A’ can actually be replaced
by other tautologies, e.g. by (equal Mary Mary).

migration path to use of a more expressive logic and more
sophisticated inference. It also opens up the use of SUMO to a
community that wishes to have simple and fast inference, since
SUMO can be (and is) exported with a lossy translation to an
OWL version. While the bulk of the SUMO axioms are not
directly expressible in OWL, they can serve as informative
comments (and in fact are exported as human-readable
comments) that serve to better define terms for the human user
than if they were simply omitted.

We should note that a general philosophy during the
construction of SUMO was not to limit it to the theorem provers
or techniques available at the time of knowledge engineering. If
something needed to be stated to capture the semantics of a
concept, we used a logic expressive enough to state it. The idea
was that any statement too complicated for reasoning could at
least be used as a formal concept. It's always possible to leave
out complex statements in order to comply with the need for
faster or decidable inference. It is not possible, obviously, to
automatically create knowledge base content that does not exist,
once better inference capabilities become available. This
approach is paying off now that serious work is underway on
practical higher order reasoning.

Sigma also includes an export of facts in Prolog form. Once
Sigma generates a TPTP version of an ontology, the TPTPWorld
tools also handle a translation to Prolog that supports horn clause
rules. There is also a simple prototype capability for exporting
SQL statements for database creation and population from
Sigma.

The growing availability and coverage of lightweight
taxonomies that cover domain specific knowledge, and the
corresponding phenomenon of "linked data" as a community
objective has encouraged the addition of an ontology mapping
and merging capability to Sigma. It is based on earlier work on
a stand-alone tool [23]. In mapping SUMO to simple
taxonomies there is often very little information for the machine
to use to determine what matches might exist. The principal
problem appears to be massive numbers of false positive
matches. A simple algorithm appears to do as well in practice as
a more sophisticated one, since the bulk of effort is still spent by
a human in selecting accurate matches. Having a simple and
easy user interface appears to provide more leverage than an
incrementally better matching algorithm. The Sigma matching
tool has been used to create an initial alignment with the
lightweight Open Biomedical Ontologies (OBO) [24], among
others. Such an alignment is problematic however, because little
verification is possible. As is typical of most products that are
being called ontologies, OBO consists mostly of taxonomic
relations, with no rules and few axioms besides class
membership.

10 WORKING with SIGMA and SUMO

There are as many possible processes for formal ontology
development as there are for software development. Small
projects may benefit from the low overhead of an informal
process. Large projects with big teams will benefit from a
greater degree of formal process. A typical process employing
Sigma to extend SUMO is as follows:

• Developers use a set of instructions or documents as a
source, or write down text in natural language that describes
the domain of interest.

• The text is used as a basis for creating a glossary of natural
language terms and definitions

• Developers examine the SUMO hierarchy (using the term
browser, and tree/graph browser) for each term in the
glossary. The WordNet search pages are used to find all the
different meanings of each defined word in the source text,
and the WordNet-SUMO mappings are used to find the
formal SUMO term that best fits the intended meaning of the
textual term. For any substantially new and specialized
domain, the task is to find a more general term that
encompasses the meaning of the more specific textual term.
Textual terms that are already covered by specific SUMO
definitions are put aside as complete. For new terms and
definitions that are needed, developers begin by adding
subclass or instance statements to the appropriate leaf term in
SUMO, by creating and editing a text file in SUO-KIF
format.

• Once a preliminary SUO-KIF file has been created,
developers load it into Sigma, along with SUMO proper and
all the other domain ontologies the new file may extend.
Developers run the Sigma Diagnostics to find any errors.

• Developers use the information in the natural language
definitions created earlier to guide creation of SUO-KIF
axioms. Each class should have at least a subclass statement
and a documentation statement. Each relation should have
domain statements defining the class membership of its
arguments, and be defined as an appropriate type of relation,
such as TransitiveRelation. Each term should have at
least one rule, that helps to make the term usable for
inference. If there are very few things that can be stated
about the term, reconsider whether it should be created.

• Developers create format and termFormat statements in
the language of choice to support natural language
paraphrases in Sigma for the axioms previously written.
These can be presented to domain experts to help confirm
that the desired knowledge has been captured correctly.

• Developers map the terms in the ontology to WordNet. This
is accomplished by placing links in the existing SUMO-
WordNet mapping files (if mapping to English) that update
the existing links where needed to point to the more specific
terms that have just been created

• Developers load the revised WordNet mapping files into
Sigma and use the Sigma WordNet Diagnostics to see where
the WordNet hierarchy may differ from the formal
relationships created in the new ontology. The existence of
differences is not necessarily bad, but they should be
examined and understood.

• Developers run the Sigma Consistency Check to find any
logical contradictions in the new theory. Normally, there
will be many cycles of adding content, then running the
Diagnostics and Consistency Check processes in Sigma to
find and correct errors as the theory is elaborated. At each
iteration where no errors are found, in a group development

process, the theory would be uploaded to a source
configuration management system such as CVS or
Subversion. Other developers are then free to test new
theories with respect to their own work, and coordinate with
each other. One can view the Diagnostics and Consistency
Check steps as analogous to compilation and build of a
conventional procedural computer program.

• Peer review is one of the best ways to improve a theory.
Sigma helps developers significantly beyond just reviewing a
file of declarative code, allowing them to search and test a
theory in many different ways.

11 EXAMPLE APPLICATION

The primary use of Sigma has been as an IDE for ontology,
rather than as an embeddable component. Many ontologies are
developed as an end in themselves for structuring information or
supporting database design. An example of this sort of
application is [62].

In order to provide an example of how Sigma is used in
practice to develop embedded applications, we now discuss the
"SUMO Stories" project, which uses SUMO and Sigma to
automatically develop short stories for small children.
Elsewhere [34] we discuss the project in more detail. Here we
will focus on how Sigma supports the project.

The first step was to collect the knowledge relevant to the
application and state it as informal English sentences. In this
case, a prior application [41] that used linguistic methods for
story production rather than deductive inference, provided this
corpus of sentences. An example fragment of a story from [42]
is

"The afternoon was windy. Rizzy the rabbit was in the
dining room. She played near a lamp. Rizzy broke the
lamp. She was scared. "

In simple sentences from a children's story, it is easy to pick
out the concepts that need to be captured formally - "afternoon",
"windy", "dining room", "lamp", "breaking", and "scared". An
experienced user of SUMO may already know the names for the
likely SUMO classes that encode these concepts or their parents
and be able simply to enter names and the "KB term" field of the
browser (see Figure 2), then confirm that the definitions match
the user's intuitions about the way the words are used in the text.
A less experienced user will enter words in the "English Word"
field to search WordNet word senses, and see the SUMO links
for each word sense.

For one example term, take "breaking". It has 59 different
senses in WordNet. The most appropriate senses are linked to
SUMO's Damaging and Destruction. The difference in those
two subclasses of process are a case of extent, with
Destruction being the more serious. By the formal axiom
(and the definitions of the other terms that appear in the axiom)

(<=>
 (instance ?PROCESS Destruction)
 (exists (?PATIENT)
 (and
 (patient ?PROCESS ?PATIENT)
 (time ?PATIENT
 (BeginFn
 (WhenFn ?PROCESS)))
 (not
 (time ?PATIENT
 (EndFn
 (WhenFn ?PROCESS)))))))

we see that Destruction entails that the patient of the process
or some essential part of it must cease to exist at the end of the
event. In the case of a child breaking a lamp, the lamp might
simply have a crack in its base. We can only state a more vague
and general notion of breaking equivalent to the SUMO notion
of Damaging.

We should note that the formal axiom makes clear the
differentiation between the two classes. If we had only a
hierarchical relationship specifying that one term was a
specialization of the other, or even the informal English
description of the terms that is also present in SUMO, we would
not be able to make this informed choice, or have the consequent
of the rule above follow as a logical fact from asserting the
existence of a Destruction.

In any application, there are likely to be notions that are not
already completely captured by existing SUMO terms. Human
emotions comprise one such area. Formalizing such a complex
area was outside the scope of the SUMO Stories effort, but
simple subclasses of the existing EmotionalState attribute
class were created to handle notions such as being "scared".

Rules were defined to govern the behavior of the story
characters. This proved to be challenging, since rules needed to
state that certain actions were possible or likely, but in many
situations these were not definite consequences of certain states
in the story world. A child playing near a breakable lamp in the
story likely results in a broken lamp, but not always. Also, a
story generator that generates the same story for the same set of
initial conditions each time is not very interesting. We began
with statements employing the SUMO capability relation that
provides an embedding of a modal statement inside a first order
logic (we will return to explain why this is a modal in a few
paragraphs below). However, it proved too limiting for the story
description. We are now exploring a lightweight implementation
of a probabilistic logic framework, but still using the existing
SUMO terms.

In the current implementation, we created rules that express
what the characters are capable of doing given the environmental
conditions and phase of the story. Java code calls Sigma's
inference API with a query template such as

(capability ?P ?R ?O)

where the capability relation takes three arguments: a process
type, a role that a thing may play in a process, and an instance of
an Object. There may be several answers to such a query. One
might be that

(capability
 RecreationOrExercise
 experiencer
 Rizzy)

meaning that Rizzy the rabbit character is capable of playing,
given the current state of the world.

We should digress now for a moment to explain why the
capability relation is considered modal. Given the challenges
involved in true higher order reasoning, we have also tried to
provide first order encodings in SUMO for notions that
traditionally would require a higher order statement. The notion
of capability is one such expression. The relation is used to
state that events of a certain type and relation to another object
may occur. A more traditional encoding of the statement above
would be

(possible
 (exists (?R)
 (and
 (instance ?R RecreationOrExercise)
 (experiencer ?R Rizzy))))

Such statements are fairly common, and yet a higher order
encoding can be a barrier to successful practical inference. A
first order encoding sacrifices some of the semantics of the
higher order version, but enough utility is retained in practice to
make statements of this type a valuable addition to SUMO.

Returning now to our example, answers are returned in a
prescribed format, with successful queries resulting in either a
yes/no answer for queries with no variables, or in an answer
structure that provides bindings for variables (such as "?R =
experiencer" in the example above), accompanied by a proof
of how those binding were found. SUMO's Java process will
pick one of the capabilities to assert (again through Sigma's
inference API) as a true fact in the story world. SUMO's Java
process will then ask another query to determine the events in
the next phase of the story.

12 Related Work

Numerous ontology editors and knowledge engineering tools
exist today. Prominent examples include Protégé [47], Specware
[48], SWOOP [49], Top Braid composer [54], OilED [50],
WebODE [51], Ontolingua [52], KAON [53], Internet Business
Logic [55], OntoTrack [56], SemanticWorks Semantic Web tool
[57] and IHMC Cmap Ontology Editor [58]. Survey articles
exist that compare and summarize main features of such tools
[59,60,61]. These surveys show that actually very few editors
and tools exist that support expressive languages such as CycL,
KIF, or SUO-KIF.

A particular unique feature of Sigma is that it is directly
linked to the TPTPworld [12] infrastructure and that it integrates
various off-the-shelf first-order automated theorem provers and
very recently even an off-the-shelf higher-order theorem prover.
In this regard, the largest body of work potentially related to
Sigma is instead actually part of the system already. These
integrated reasoners support consistency checking but they can
also be applied for other purposes including, for example,
question answering. It should be possible to enhance tools like
Protege also with some of the reasoning functionality supported
in Sigma. However, this would clearly require major
implementation effort. With regard to integration of theorem
provers the Specware system is probably closest related to
Sigma.

In many respects Sigma is also related to the ProofGeneral
system [26]. ProofGeneral provides powerful and configurable
interfaces which help user-interaction with proof assistants. In
Sigma we are mainly interested in interfaces to automated
theorem provers though. However, like in ProofGeneral, our
interest is to support the presentation and explanation of machine
proofs to the user.

13 SUMMARY and CONCLUSIONS

Sigma has served two main purposes. It is a practical tool that
has supported the development of the SUMO. It is also a toolkit
and testbed that is used to support experiments in ontology
application and logical reasoning. Sigma has co-evolved with
SUMO with each becoming more sophisticated and extensive as
they progressed. The regular open source release of both
products has and will continue to form a unique resource for
academic and commercial researchers and practitioners engaged
in ontology, natural language understanding and formal
reasoning.

There are several efforts we are pursuing to expand the
functionality and utility of Sigma.

First is to package a formal release. It has proven difficult to
provide regular binary releases with consistent functionality and
documentation at regular intervals, even though open source
development releases have always been available to those who
are willing to compile from source and deal with a research
toolkit.

Second is a major effort to provide a formal semantics for
SUO-KIF's higher order statements in combination with
choosing an appropriate semantics for SUMO's modal operators,
and to accordingly adapt our recent translation to THF [18].
LEO-II and other THF compliant provers can then be uniformly
applied to problems encoded in SUO-KIF, including the SUMO,
and they can subsequently be improved with regard to the
particular challenges in question answering.

Once a formal semantics for SUO-KIF's higher order
statements is fixed, we ideally would also like to devise a highly
trusted verification component for SUMO. The idea is that this
verification component should be capable of exploiting proof
information (such as generated answer to queries and axiom
selections) from other inference engines in order to reconstruct
proof objects on its own in a highly trusted (ideally fully
verified) reasoning engine. The hope is that with additional proof
information available reconstruction of the proofs should be
generally possible even when the trusted reasoning engine is not
particularly well suited for high performance proof automation.
Overall we would thereby achieve a two level support for proof
automation in SUMO: the aim of the first level would be to
provide various means for high performance automated proof
search, and verifying the soundness of the generated answers
would be the task of the second level. Consulting the second
level could be optional, for example, only if a user finds a query
answer suspicious. In safety critical applications it could be
made a general standard though. The advantage of the two level
approach would be that even potentially unsound proof
automation means could be considered as useful in Sigma,
provided that their soundness leaps are only of low practical
relevance. These few soundness leaps could then still be detected
by the second level.

Lastly, we are developing a simple first order theorem prover
in Java as an integrated part of Sigma. This will serve as an
educational tool, and a testbed for developing features for
theorem provers that demand access to the internals of a prover.

Acknowledgements

Sigma has been a decade-long group effort. Due to space
constraints it is impossible to mention all contributors. Readers
are encouraged to recognize all co-authors on the referenced
papers as contributors, as well as those who have written the
actual Java code in Sigma, and who are credited in the code itself
at the SourceForge CVS logs [43]. Besides the authors of this
paper, some major contributors include Michal Sevcenko, Frank
Theiss, Krystof Hoder, Steven Trac, John Li, Nick Siegel, Geoff
Sutcliffe, Ian Niles and Randall Schulz.

REFERENCES

[1] Sigma web site http://sigmakee.sourceforge.net
[2] Pease, A., (2003). The Sigma Ontology Development Environment.

In Working Notes of the IJCAI-2003 Workshop on Ontology and
Distributed Systems. Volume 71 of CEUR Workshop Proceedings.

[3] Niles, I., & Pease, A., (2001), Toward a Standard Upper Ontology. In
Proceedings of the 2nd International Conference on Formal Ontology
in Information Systems (FOIS-2001), Chris Welty and Barry Smith
(eds.), pp. 2-9.

[4] de Melo, G., Suchanek, F., and Pease, A., (2008). Integrating YAGO
into the Suggested Upper Merged Ontology. In Proc. of the 20th
IEEE International Conference on Tools with Artificial Intelligence
(ICTAI 2008). IEEE Computer Society, Los Alamitos, CA, USA.

[5] Niles, I., and Pease, A., (2003). Linking Lexicons and Ontologies:
Mapping WordNet to the Suggested Upper Merged Ontology. In
Proceedings of the IEEE International Conference on Information
and Knowledge Engineering, pp. 412-416.

[6] Pease, A., and Fellbaum, C., (2010) Formal Ontology as Interlingua:
The SUMO and WordNet Linking Project and GlobalWordNet. In
Huang, C. R. et al (eds.), Ontologies and Lexical Resources.
Cambridge: Cambridge University Press, ISBN-13: 9780521886598.

[7] Kucera and Francis, W.N. (1967). Computational Analysis of
Present-Day American English. Providence: Brown University Press.

[8] Landes S., Leacock C., and Tengi, R.I. (1998) “Building semantic
concordances”. In Fellbaum, C. (ed.) (1998) WordNet: An Electronic
Lexical Database. Cambridge (Mass.): The MIT Press.

[9] Global WordNet web site http://www.globalwordnet.org
[10] SUMO web site http://www.ontologyportal.org
[11] Hayes, P., and Menzel, C., (2001). A Semantics for Knowledge

Interchange Format. In Working Notes of the IJCAI-2001 Workshop
on the IEEE Standard Upper Ontology.

[12] Trac, S., Sutcliffe, G., and Pease, A., (2008). Integration of the
TPTPWorld into SigmaKEE. In Proceedings of IJCAR '08 Workshop
on Practical Aspects of Automated Reasoning (PAAR-2008).
Volume 373 of the CEUR Workshop Proceedings.

[13] Pease, A., and Sutcliffe, G., (2007). First Order Reasoning on a
Large Ontology. In Proc. of the CADE-21 workshop on Empirically
Successful Automated Reasoning on Large Theories (ESARLT).

[14] Sutcliffe, G., (2009). The TPTP Problem Library and Associated
Infrastructure. Journal of Automated Reasoning, 43(4):337-362..

[15] Pease, A., Sutcliffe, G., Siegel, N., and Trac, S., (2010). Large
Theory Reasoning with SUMO at CASC. Special issue on Practical
Aspects of Automated Reasoning, AI Comm., 23(2-3):137-144. IOS
Press.

[16] Hoder, K. (2008) Automated Reasoning in Large Knowledge Bases,
PhD thesis, Charles University, Prague, Czech Republic.

[17] Benzmüller, C., and Pease., A., (2010). Progress in Automating
Higher Order Ontology Reasoning. In Proceedings of the Second

http://sigmakee.sourceforge.net/
http://www.ontologyportal.org/
http://www.globalwordnet.org/

International Workshop on Practical Aspects of Automated
Reasoning, Konev,B., Schmidt, R.A., and Schulz, S., (eds.).

[18] Sutcliffe, G., and Benzmüller, C., (2010) Automated Reasoning in
Higher Order Logic using the TPTP THF Infrastructure. Journal of
Formalized Reasoning, 3(1):1-27.

[19] Pease, A., (2009). Standard Upper Ontology Knowledge
Interchange Format, dated 6/18/2009. Available at
http://sigmakee.cvs.sourceforge.net/*checkout*/sigmakee/sigma/suo-
kif.pdf

[20] Genesereth, M., (1991). “Knowledge Interchange Format’’. In
Proceedings of the Second International Conference on the Principles
of Knowledge Representation and Reasoning, Allen, J., Fikes, R.,
Sandewall, E. (eds.), Morgan Kaufman Publishers, pp 238-249.

[21] Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I.,
McGuinness, D., Patel-Schneider, P., Stein, L., Dean, M., Schreiber,
G., (Ed.) (2004). OWL Web Ontology Language Reference, World
Wide Web Consortium, Recommendation, Feb. 2004.

[22] Pease, A., and Benzmüller, C., (2010). Ontology Archaeology: A
Decade of Effort on the Suggested Upper Merged Ontology, in
Proceeding of The ECAI-10 Workshop on Automated Reasoning
about Context and Ontology Evolution (ARCOE-10), A.Bundy and
J.Lehmann and G.Qi and I.J.Varzinczak (eds.), August 16-17,
Lisbon, Portugal.

[23] Li, J., (2004) LOM: A Lexicon-based Ontology Mapping Tool, in
Proc. of the Performance Metrics for Intelligent Sys. conf. (PerMIS).

[24] Smith B, Ashburner M, Rosse C, Bard C, Bug W, Ceusters W,
Goldberg L J, Eilbeck K, Ireland A, Mungall C J, The OBI
Consortium, Leontis N, Rocca-Serra P, Ruttenberg A, Sansone S-A,
Scheuermann R H, Shah N, Whetzel P L and Lewis S (2007). "The
OBO Foundry: coordinated evolution of ontologies to support
biomedical data integration", Nature Biotechnology 25, 1251 - 1255.

[25] Youn, S., and McLeod, D., (2006). Ontology Development Tools
for Ontology-Based Knowledge Management. Encyclopedia of E-
Commerce, E-Government and Mobile Commerce, Idea Group Inc.

[26] Aspinall, D., (2000). Proof General: A Generic Tool for Proof
Development. In Tools and Algorithms for the Construction and
Analysis of Systems, Proceedings of TACAS 2000, LNCS 1785.
Springer, pp. 38-42.

[27] Fellbaum, C (1998, ed.) WordNet: An Electronic Lexical Database.
Cambridge, MA: MIT Press.

[28] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L.,
(2009). ImageNet: A Large-Scale Hierarchical Image Database.
IEEE Computer Vision and Pattern Recognition (CVPR).

[29] Riazanov, A., and A. Voronkov, A., (2002). The Design and
Implementation of Vampire. AI Communications, 15(2-3):91–110.

[30] Hurd, J, (2003). First-Order Proof Tactics in Higher-Order Logic
Theorem Provers. In Archer, M., Di Vito, B., and Munoz, C., (eds.),
Proceedings of the 1st International Workshop on Design and
Application of Strategies/Tactics in Higher Order Logics, number
NASA/CP-2003-212448 in NASA Technical Reports, pp. 56–68.

[31] Grant, J., and Hunter, A. (2008). Analysing inconsistent first-order
knowledge bases. Artificial Intelligence 172:1064-1093.

[32] Schulz. S., (2002). E: A Brainiac Theorem Prover. AI
Communications, 15(2-3):111.

[33] Pease, A., and Li, J. (2010) Controlled English to Logic Translation.
In Theory and Applications of Ontology, ed. Roberto Poli, Michael
Healy, and Achilles Kameas, Springer, ISBN: 978-90-481-8846-8.

[34] Cua, J., Manurung, R., Ong, E., and Pease, A., (2010). Representing
Story Plans in SUMO, Proceedings of the NAACL HLT 2010
Second Workshop on Computational Approaches to Linguistic
Creativity, Los Angeles, CA, June 5, 2010.

[35] Benzmüller C., Paulson L.C., Theiss F., and Fietzke A., (2008).
LEO-II - A Cooperative Automatic Theorem Prover for Higher-Order
Logic. In Proceedings of the Fourth International Joint Conference on
Automated Reasoning (IJCAR'08), LNAI volume. 5195, Springer,
pp. 162-170.

[36] Benzmüller C. and Paulson L.C., (2010). Multimodal and
Intuitionistic Logics in Simple Type Theory. The Logic Journal of
the IGPL, 18(6): 881-892.

[37] Benzmüller, C., (2009). Automating Access Control Logic in
Simple Type Theory via LEO-II. In Emerging Challenges for
Security, Privacy and Trust, 24th IFIP TC 11 International
Information Security Conference, SEC 2009, Pafos, Cyprus, May 18-
20, 2009, Proceedings, IFIP vol. 297, Springer pp. 387-398.

[38] Benzmüller, C., (2010). Combining Logics in Simple Type Theory.
In Proceedings of 11th International Workshop on Computational
Logic in Multi-Agent Systems, LNAI 6245, Springer, pp. 33-48.

[39] Benzmüller, C., and Paulson L., (2011). Quantified Multimodal
Logics in Simple Type Theory. Logica Universalis, to appear. For an
earlier version see: C. Benzmüller and L. C. Paulson, Quantified
Multimodal Logic in Simple Type Theory. Seki Report SR-2009-02
(ISSN 1437-4447), Saarland University, 2009.

[40] Benzmüller, C., Gabbay, D., Genovese, V., and Rispoli, D., (2011).
Embedding and Automating Conditional Logics in Classical Higher
Order Logic. Submitted.

[41] Solis, C., Siy, J.T., Tabirao, E., and Ong, E., (2009). Planning
Author and Character Goals for Story Generation. Proceedings of the
NAACL Human Language Technology 2009 Workshop on
Computational Approaches to Linguistic Creativity, 63-70, Boulder,
Colorado, USA.

[42] Hong, A., Solis, C., Siy, J.T., and Tabirao, E. 2008. Picture Books:
Automated Story Generator. Undergraduate Thesis, De La Salle
University, Manila, Philippines.

[43] Sigma SourceForge CVS web site
http://sigmakee.cvs.sourceforge.net/sigmakee

[44] Benzmüller, C., and Pease, A., (2010). Reasoning with Embedded
Formulas and Modalities in SUMO, in Proceeding of The ECAI-10
Workshop on Automated Reasoning about Context and Ontology
Evolution (ARCOE-10), A.Bundy and J.Lehmann and G.Qi and
I.J.Varzinczak (eds.), August 16-17, Lisbon, Portugal.

[45] Rubin, D.L., Noy, Natalya F and Musen, M.A. "Protégé: A Tool for
Managing and Using Terminology in Radiology Applications."
Journal of Digital Imaging. J Digit Imaging (2007): 1-13

[46] Lenat, D., (1995). Cyc: A large-scale investment in knowledge
infrastructure, Communications of the ACM 38-11 (Novemter).

[47] Protégé. The Prot ég ́e project, http://protege.stanford.edu , (2002)
[48] Specware. http://www.specware.org/
[49] Kalyanpur, Aditya., Parsia, Bijan., Hendler, James. : A Tool for

Working with Web Ontologies In: Proceedings of the International
Journal on Semantic Web and Information Systems, Vol.1, No.1,
Jan-Mar (2005) (see also http://code.google.com/p/swoop/)

[50] Bechhofer, S., Horrocks, I., Goble, C., Stevens, R.: OILEd: a
reasonable ontology editor for the semantic web In: KI2001, Joint
German/Austrian conference on Artificial Intelligence, volume LNAI
Vol. 2174, pages 396-408, Vienna (2001)

[51] Arpírez, J.C., Corcho, O., Fernández-López, M., Gómez-Pérez, A.:
WebODE: a scalable worbench for ontological engineering. In:
KCAP-01, Victoria, Canada (2001)

[52] Farquhar, A., Fikes, R., Rice, J.: The Ontolingua server: a tool for
collaborative ontology construction. In: Tenth Knowledge
Acquisition for Knowledge-Based Systems Workshop, Banff, Canada
(1996).

[53] KAON - The Karlsruhe Ontology and Semantic Web Tool Suite.
http://kaon.semanticweb.org

[54] Top Braid Composer. http://www.topbraidcomposer.com
[55] Internet Business Logic.
 http://www.semanticweb.org/wiki/Internet_Business_Logic.
[56] Liebig, Thorsen., Noppens, Olaf.: OntoTrack: Fast Browsing and

Easy Editing of Large Ontologies: In: Proceedings of the 2nd
International Workshop on Evaluation of Ontologybased Tools
(EON-2003) Sanibel Island, Florida, USA (2003)

[57] SemanticWorks Semantic Web tool. http://www.altova.com/semanticworks.html
[58] IHMC Cmap Ontology Editor. http://www.ihmc.us/groups/coe/
[59] Mike Bergman: The Sweet Compendium of Ontology Building

Tools. http://www.mkbergman.com/862/the-sweet-compendium-of-
ontology-building-tools/

http://www.mkbergman.com/862/the-sweet-compendium-of-ontology-building-tools/
http://www.mkbergman.com/862/the-sweet-compendium-of-ontology-building-tools/
http://www.ihmc.us/groups/coe/
http://kaon.semanticweb.org/
http://protege.stanford.edu/
http://sigmakee.cvs.sourceforge.net/sigmakee
http://sigmakee.cvs.sourceforge.net/*checkout*/sigmakee/sigma/suo-kif.pdf
http://sigmakee.cvs.sourceforge.net/*checkout*/sigmakee/sigma/suo-kif.pdf

[60] M. R. Khondoker, P. Mueller: Comparing Ontology Development
Tools Based on an Online Survey, Proceedings of the World
Congress on Engineering 2010 Vol I WCE 2010, June 30 - July 2,
2010, London, U.K.

[61] Michael Denny: Ontology Tools Survey, Revisited.
http://www.xml.com/pub/a/2004/07/14/onto.html

[62] Pease, A., and Rust, G., (2008) Formal Ontology for Media Rights
Transactions, in Semantic Web Methodologies for E-Business
Applications, ed. Roberto Garcia. IGI publishing.

http://www.xml.com/pub/a/2004/07/14/onto.html

