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Abstract.  Sigma  is  an  open  source  environment  for  the 
development of logical theories.  It has been under development 
and  regular  release  for  nearly  a  decade,  and  has  been  the 
principal environment under which the open source Suggested 
Upper Merged Ontology (SUMO) has been created. We discuss 
its features and evolution, and explain why it is an appropriate 
environment  for  the  development  of  expressive  ontologies  in 
first and higher order logic.

1 INTRODUCTION

We should first  discuss  what  we mean by a  formal theory or 
formal ontology, as we use these terms interchangeably in this 
paper.  For our purposes, these are mathematical entities, that are 
collections  of  statements  made  in  a  language  with  a  formal 
semantics.  The use of the word "ontology" may be a source of 
some confusion in computer science as it has been applied to so 
many  sorts  of  information  models  that  it  can  be  almost 
meaningless.  In particular, things which have previously been 
called schemas, taxonomies, semantic networks or object models 
have now been branded "ontologies".  A key distinction for us is 
whether a given model has a definition in a formal language that 
allows each term to be interpreted without recourse to human 
intuition about its meaning based on the name of the term or 
natural language documentation about the term.   Semantic web 
taxonomies, for example, describe their terms formally only up 
to  isomorphism  in  a  subclass  hierarchy  and  typically  add 
informal natural language comments to further characterize the 
intended definitions.

There  have  been  many  environments  created  to  support 
ontology development [25] (in the loose sense of the phrase). 
The  one  most  comparable  to  Sigma  is  the  Cyc  system [46], 
which like SUMO, includes a large ontology.  Cyc contains a 
single inference engine, and is not open source, which limits the 
ability  to  make  meaningful  comparisons  with  other  tool  sets. 
While there are few tools comparable to Sigma in total, there are 
many  tools  which  are  related  to  the  various  components  of 
Sigma  and  these  are  discussed  in  more  detail  in  the  section 
below on related research, along with references to major frame-
based ontology editing tools.

The majority of ontology development tools, at least in recent 
years,  have  been  created  to  support  creation  of  lightweight 
taxonomies  in  the  OWL  language  [21].   The  most  popular 
system  for  developing  OWL,  even  though  it  pre-dates  the 
development of that language, is Protege [45]. Developers who 
are familiar with languages of that sort often expect that there 
would exist ontology development tools that support graphically-
based authoring for other languages.

There are a limited number of language constructs in a frame-
based  or  description-logic  language.   Frames  have  class 
membership and slots.  Slots can have values and restrictions. 
The primary language construct is the taxonomy, which lends 
itself easily to tree-based views and editors.  This is similar to 
object oriented language IDEs that typically have tree views for 
the object hierarchy, and may have visual editors that allow the 
user  to  quickly  create  shells  of  code,  based  on  the  object 
taxonomy.  Many ontology developers start by developing their 
products  in  a  lightweight  ontology  editor  that  handles  frame-
based  languages.  Ontology  developers  who  are  used  to  that 
paradigm  may  wonder  why  Sigma  does  not  offer  an  editing 
component  as  the  primary  method  for  developing  ontologies. 
Most modern software engineering however takes place in a text 
editor.  Tools are an important part of the development process, 
and can help improve both productivity and quality.   But  the 
complexity of a modern programming language prevents modern 
software development from being reduced to simple forms entry 
and visual editors.  

Modern  and  expressive  languages  for  the  development  of 
formal theories, such as SUO-KIF [19] and TPTP [14] have a 
similar degree of expressiveness, in a broad sense, to a modern 
programming  language.  For  that  reason,  we  believe  that  the 
appropriate role for a knowledge engineering environment is in 
browsing, inference, analysis and other functions, rather than, at 
least primarily, authoring and editing. A simple taxonomy and 
slot-value  filling  interface  however  would  be  useful  for  fast 
prototyping and will be added to Sigma in the future.

There is  promise in  creating editing modes for text  editors 
appropriate  for  knowledge  engineering,  such  as  with  the 
ProofGeneral environment [26].  One challenge however is that 
the choice of a text editor, is, for a professional programmer, a 
very personal, and often a very strongly held preference.  To the 
extent that knowledge engineers are also programmers, it will be 
difficult  to  create  any  environment  so  compelling  that  it  will 
cause them to switch text editors.  One alternative would be to 
capture  just  a  portion  of  the  "market"  by  working  to  add 
appropriate modes to just one text editor.  Another would be to 
apply very significant resources, that do not appear yet to exist in 
the  marketplace,  to  create  modes  in  several  powerful  editors. 
For these reasons also, we have focused on tools other than text 
editing modes.



Also in keeping with a modern software development model, 
we  have  utilized  the  Concurrent  Version  System  (CVS)  for 
collaborative ontology development.   Developers  are  typically 
given authority over one or more ontologies, required to check in 
progress at  least  weekly so that other developers can sync up 
with their changes.  This has also resulted in a detailed public 
record of the development and evolution of the Suggested Upper 
Merged Ontology (SUMO) [3,22].

While Sigma [1,2] was created to support SUMO, and that 
has  been  its  primary  use  during  some  eight  years  of 
development,  that  is  by no means the only theory that  it  can 
handle.  Sigma works on knowledge bases that can be composed 
from various files selected by the user.  Those files can be coded 
in a small number of different formal languages, including TPTP 
and OWL, as well as SUO-KIF.  The Sigma user can easily work 
with very small theories or very large ones by composing only 
the theories that are needed for the work at hand.  A typical use 
of Sigma would involve loading just the upper level of SUMO 
and  whatever  domain  theory  is  needed  for  the  user's  chosen 
application area.

Tools within Sigma (Figure 1) can be broadly segmented into 
several  groups,  (1)  browsing  and  display,  (2)  analysis  and 
debugging,  (3)  inference,  and  (4)  mapping,  merging  and 
translation.  We describe each of these topics in the following 
sections, but first give a very brief introduction to the SUMO, 
which  is  the  logical  theory  Sigma  was  initially  developed  to 
support.  We  include  sections  at  the  end  of  the  paper  which 
discuss the typical workflow in the use of Sigma and SUMO and 
also presents a concrete application scenario.

2 SUMO

The Suggested Upper Merged Ontology [3,10] began as just 
an upper level ontology encoded in first order logic.  The logic 
has expanded to include higher order elements.  SUMO itself is 
now  a  bit  of  a  misnomer  as  it  refers  to  a  combined  set  of 
theories: (1)  the original upper level, consisting of roughly 1000 

terms, 4000 axioms and including some 750 rules. In this paper, 
we'll refer to this portion of SUMO as SUMO "proper". (2) A 
MId-Level  Ontology  (MILO)  of  several  thousand  additional 
terms and axioms that define them, covering knowledge that is 
less general than those in SUMO.  We should note that there is 
no objective standard for what should be considered upper level 
or  not.   All  that  can  be  said  (simplistically)  is  that  terms 
appearing lower in a taxonomy (more specific) are less general 
than  those  above.   To  avoid  pointless  argument  about  what 
constitutes an "upper level" term, we simply try to keep SUMO 
about 1000 terms with their associated definitions, and any time 
content is added, the most specific content, as measured by its 
having the lowest level in the subclass hierarchy, is, if necessary, 
moved to MILO or a domain ontology. (3) There are also a few 
dozen domain ontologies on various topics including theories of 
economy,  geography,  finance  and  computing.   Together,  all 
ontologies total  roughly 20,000 terms and 70,000 axioms. We 
might also add a fourth group of ontologies which are theories 
that consist largely of ground facts, semi-automatically created 
from other  sources  and  aligned  with  SUMO.   These  include 
YAGO  [4],  which  is  the  largest  of  these  sorts  of  resources 
aligned with SUMO and has millions of facts.

SUMO is defined in the SUO-KIF language [19], which is a 
derivative of the original Knowledge Interchange Format [20].

SUMO  proper  has  a  significant  set  of  manually  created 
language display templates that allow terms and definitions to be 
paraphrased in various natural languages, including non-western 
character sets.  These include Arabic, French, English, Czech, 
Tagalog,  German,  Italian,  Hindi,  Romanian,  and  Chinese 
(traditional and simplified characters). Automatically generated 
natural  language  paraphrases  can  be  seen  in  the  rightmost 
column of the screen display given as Figure 2.

Figure 1: Major Sigma Functions



Take for example that we have the SUO-KIF statement that

(authors Dickens OliverTwistBook).  

We have the following statements that have been coded to 
support  the  paraphrasing  of  statements  with  the  authors 
relation.

(format EnglishLanguage authors 
  "%1 is %n the &%author of %2")

(format it authors "%1 è l' &%autore di %2")

Terms are also given language-specific strings, when appropriate

(termFormat EnglishLanguage OliverTwistBook 
"Oliver Twist")

If a Sigma user has loaded this information in a knowledge 
base, and English is selected as the presentation, the user will see 

"Dickens is the author of Oliver Twist." next to the SUO-KIF 
statement.  If Italian is selected, the paraphrase will be "Dickens 
è  l'autore  di  Oliver  Twist".   Arguments  to  predicates  are 
recursively substituted for the %1, %2 etc parameter variables, 
allowing much larger expressions to be constructed from more 
complex  logical  expressions.  The  %n  refers  to  the  word  for 
negation in the given language, and is inserted if the formula is 
negated.  For example

(not (authors RobinCook WarAndPeace))

is rendered as "Robin Cook is not the author of War and Peace."

Figure 2: Sigma browsing screen



3 SUMO and WordNet

SUMO has been mapped by hand to the entire WordNet [27] 
lexicon [5].  WordNet consists of over 100,000 linguistic senses 
called  "synsets"  (synonym sets).   For  example,  one  WordNet 
synset is 

mouth, speak, talk, utter, verbalise, verbalize: express in  
speech; "She talks a lot of nonsense"; "This depressed  
patient does not verbalize"

Initially,  each term in SUMO proper (the 1000 term upper 
level of SUMO) was mapped, and in later phases all WordNet 
synsets  appearing  above  a  frequency  threshold  in  the  Brown 
Corpus  [7,8]  were  mapped  to  a  roughly  equivalent  term  in 
SUMO's  lower  level  ontologies.   If  a  rough equivalent  didn't 
exist,  one was created and defined.   One caveat  is  that  some 
words in English are vague enough to defy logical definition, or 
only have meaning within the context of a sentence,  so some 
such words still lack direct equivalences.  

For example, take the word "bright" in the sense of "full of 
promise".  In the context of "John has a bright future.  He was 
selected for the varsity basketball team as a freshman." the word 
means that he is better at basketball than many of his high school 
classmates.   In  other  contexts  it  might  mean that  he  is  more 
likely to recover from an orthopaedic injury than other patients 
of a similar demographic, or that he's likely to become president.  
A  simple  word-to-term  relationship  is  not  enough,  and 
something  more  sophisticated  would  be  needed  to  create  a 
specification of meaning that is related to context.  Contrast this 
with  "walking"  in  the  sense  of  ambulation.  It  is  relatively 
straightforward  to  give  some  degree  of  formal  definition  the 

notion  of  "walking"  as  an  individual  term  in  a  hierarchy  of 
processes  and  differentiated  from  "running",  "crawling", 
"driving" etc.

While this paper is not principally about the SUMO-WordNet 
mappings, it is worth stating at least briefly that the two products 
have very different roles.  SUMO is a formal ontology, stated in 
a  particular  mathematical  logic  with  associated  inference 
engines.   It  contains  rules  that  allow it  to  be  used  in  logical 
deduction. SUMO  is  –  to  the  best  of  the  ability  of  current 
theorem  provers  to  determine  –  logically  consistent,  and  we 
continuously  strive  to  find  and  eliminate  inconsistencies  with 
improved  theorem  proving  technology.   SUMO  is  a  product 
constructed intentionally by humans.  New terms and definitions 
can be added at will to model reality and do not need to mirror  
the  presence  (or  absence)  of  linguistic  tokens  in  any  human 
language.

In contrast, WordNet is a lexical database of English.  Lexical 
tokens are  collected from the use of English and may not  be 
arbitrarily created by the WordNet developers.  Lexical tokens 
are not formal, mathematical entities.  Words can be vague and 
ambiguous.   Many words  cannot  be given  formal  definitions. 
The  semantic  relations  of  WordNet  are  not  necessarily  truth 
preserving through an arbitrary number of links.  With a very 
small number of available semantic relations a number of logical  
notions are necessarily conflated.  For example (see Figure 3), in 
WordNet, "plumber" is a type of "human" despite that being a 
transient role that is not true throughout the life of any plumber,  
whereas "ape" is a type of "primate" and that fact is indeed true 
throughout the life of any ape.  WordNet considers a "plumber" 
to be a "human",  whereas SUMO considers plumber to be an 
occupational position, and therefore an attribute that holds true 
about a particular human at a particular time.  

The "role" relation (appropriate for relating individuals and 
kinds of  jobs)  is  different  from the "type"  relation (relating a 
general class of things to a more specific class of things).  One 
might argue that WordNet should simply add a new semantic 
relation  of  "role".   However,  there  are  thousands  of  such 
relations.  Do all of them get added to WordNet? 

We should note that this example, and many others that could 
be cited are not criticisms of WordNet.  WordNet is designed to 
represent  language,  not  a  logically  consistent  reality.   The 
"hyponym/hypernym" relation is intended to represent linguistic 
notions,  especially  the  "substitution  test"  which  allows  more 
general  words  to  be  substituted  for  more  specific  words  in  a 
sentence without making a sentence nonsensical.

Most  importantly,  SUMO  has  an  entirely  open  set  of 
statements that can be made involving multiple concepts.  Where 
the set of WordNet semantic relations is limited to just a fixed 
and small set of binary relations that are linguistically justifiable, 
SUMO  has  an  open  set  of  thousands  of  relations,  and  rules 
which combine sets of arbitrary numbers of terms in complex 
and productive ways that are capable of expressing the full set of 
facts  that  govern  our  reality.  WordNet  is  appropriate  for 
modelling language.  SUMO is appropriate for modelling truths 
about the world.

Having SUMO and WordNet as distinct but linked products 
allows us to separate language and logic and not have linguistic 
concerns  impact  the  representation  of  reality,  or  the  goal  of 
representing  the  world  disturb  the  accurate  representation  of 
human language as  written and spoken.   Having linked these 

Figure 3: Comparing hierarchies of SUMO and WordNet



different  resources  allows  us  a  rich  basis  for  understanding 
language [33].

The  Global  WordNet  effort  [6,9]  links  lexicons  in  many 
languages, following the same model of computational lexicon 
development as the original English WordNet.  Wordnets have 
now been developed for some 40 languages.  This rich set  of 
cross-linguistic  links that  includes  SUMO has  the  promise  of 
being  the  basis  for  much  work  in  language  translation  and 
linguistics  generally.   A  simple  idea  for  taking  advantage  of 
some  of  this  work  would  be  to  expand  the  set  of  language 
translations for individual terms available for SUMO.

4 BROWSING and DISPLAY

Sigma was originally just a display tool. Its original,  and still  
most heavily used function, is for creating hyperlinked sets of 
formatted axioms that all  contain a particular term (Figure 2). 
Clicking on a term in turn gives a hyperlinked display of all the 
axioms that contain the new term.  Next to each axiom is given 
the file and line(s) where the axiom was written. Also shown is 
an automatically generated natural language paraphrase of each 
axiom.  The  mechanism  in  Sigma  for  language  generation  is 
simple,  but  with  a  very  large  ontology used  as  the  source  of 
language generation the richness and coverage of the resulting 
statements is still significant. Much productive work remains to 

extend the functionality of this component to take into account 
the latest work in language generation.  In particular, significant 
improvement  would come from natural  use of  prepositions in 
paraphrasing  statements  about  actions  and  the  participants  in 
actions.

In 2008 we added a simplified browser view (Figure 4) that 
may be more appropriate for users who are transitioning from 
use  of  frame  and  description  logic  languages.   It  gives 
prominence to a tree view of the subclass hierarchy and presents 
binary relations in a simple tabular format, relegating rules to an 
area lower in the browser pane, and rendering them in the natural  
language paraphrase form only.

Sigma includes a tree browser display.  In contrast to many 
ontologies  developed  in  frame  languages,  SUMO has  several 
hierarchies that can be used to organize and display the theory. 
These include hierarchies of physical parts, relations, attributes, 
processes and others.  As such, the tree browser allows the user 
to select any transitive binary relation as the link by which the 
hierarchy display is created.

In 2007-2008 a significant effort was undertaken to find open 
source images that could be linked to provide an informal visual 
representation of as many of the concepts in SUMO as possible. 
Some 12,000 links were made by hand to public domain icons 
and  images  in  Wikipedia.   In  2009  Princeton University 
published  results  of  a  project  to  link  images  to  WordNet. 

Figure 4: Simplified browser view



Although the links are public, many of the images in their corpus 
do not have an open license.  We looked only at those images 
linked  to  WordNet  synsets  that  have  a  rough  equivalence 
mapping to SUMO terms.  As a result of both restrictions, only 
900  images  which  were  linked  to  Wikipedia  in  Princeton's 
ImageNet [28] corpus were imported. 

5 ANALYSIS and DEBUGGING

Sigma includes a number of  specialized and general tools for 
ensuring  ontology  quality.   The  ultimate  tool  for  quality 
checking on a formal ontology is formal reasoning.  However, in 
expressive  ontologies,  such  as  SUMO,  we  can  generally  not 
expect  that  all  contradictions   can  be  detected  with  theorem 
provers  or  that  consistency can be formally proved (note,  for 
example, that Peano arithmetic can be formalized in SUO-KIF). 
But that does not rule out that such goals can nevertheless be 
achieved for many concrete theories, in particular, such theories 
which do not make use of the full expressive power of SUO-
KIF.  Sigma  therefore  provides  different  tools  for  quality 
checking, combining exhaustive and terminating special purpose 
tests  with  incomplete  and  generally  non-terminating  general 
purpose testing based on theorem proving or model finding.

 Moreover,  a  large  theory  may  be  inconsistent  while  still 
being  used  for  practical  theorem  proving  and  question 
answering.  It is not desirable, but just a fact of life.  A theory is 
either  consistent  or  not,  but  just  because  a  theory  potentially 
contains some hidden inconsistency, this does not mean that this 
inconsistency  will  influence  any  given  proof  in  practical 
applications of the ontology (if so, then it is also more likely that 
the inconsistency can in fact be detected and eliminated in the 
first place by theorem proving and model finding means). And 
even  if  this  happens  in  rare  cases,  then  there  is  still  the 
possibility to check the delivered proof or argument by hand and 
to reject it based on this a posteriori verification. Inconsistencies 
may  theoretically  linger  undetected  for  years  and  may  never 
become practically relevant.

We will discuss theorem proving in the following section, so 
in this section we describe the various special case tests that we 
have  found to  be  useful,  and  included  in  Sigma.   While  the 
number  of  possible  tests  is  potentially  infinite,  there  are  a 
number of common problems that result from errors that are easy 
to make.  The special case tests aim to cover these most common 
cases.

There  are two  special  case  tests  for  errors  that  must  be 
corrected.   We  test  for  terms  without  a  root  in  the  subclass 
hierarchy  at  the  term  Entity,  which  is  the  topmost  term  in 
SUMO.  This commonly results from either omitting a subclass 
or  instance  statement  when  defining  a  new  term,  or  by 
misspelling the name of the intended parent term. The second 
special case test is for where a term has parents that are defined 
to be disjoint.  In a large theory like SUMO, it can be easy to 
lose track of this case, especially when the ultimate conflict may 
be  between  terms  that  are  many  levels  up  in  the  subclass 
hierarchy.

There are also a number of tests for cases that are indicative 
of  a  problem,  yet  not  strictly  an  error  that  would  result  in  a 
logical  contradiction.   The  first  of  these  is  for  terms  lacking 
documentation.  In theories under construction, theories that are 
the results of importing and merging another ontology, or simply 
for large lists of domain instances,  like city names, it  may be 

reasonable,  temporary,  or  expected  for  such  terms  to  lack 
documentation.   But  this  does  often  reflect  an  outright  error, 
where a term name was simply misspelled in the documentation 
definition, or in some other axiom.

We test  for cases  where terms do not  appear in any rules. 
This again is common in collections of instance-level facts, but 
undesirable  for  many classes  or  relations,  where  it  should  be 
possible  to  define precisely the intended meaning of  the term 
with a small number of formal rules, as well as statements like 
class membership.

Because knowledge bases are often composed from SUMO's 
general  and  domain  specific  component  ontologies,  it  is 
desirable  to  limit  dependencies  among  the  files  as  much  as 
possible.   For  that  reason  we  include  a  tool  to  specify 
dependencies  between  pairs  of  files.   It  is  typically  most 
desirable at least to ensure that dependencies are only from one 
file to another, and not between both files.  All domain files will  
of course depend at least upon SUMO proper, since they form a 
single integrated theory that is decomposed into separate files for 
convenience and efficiency of inference.

A further test exploits the SUMO-WordNet mappings. They 
offer the opportunity to find problems exposed by differences in 
the two products.  As discussed above, we believe that the two 
hierarchies should not necessarily be isomorphic, and therefore 
respective differences do not necessarily mark an error.

In  the  diagnostics  provided  for  the  SUMO-WordNet 
mappings. Sigma finds WordNet synsets without mapped formal 
terms and those for which a formal term is provided, but is not 
found in the current loaded knowledge base.  This helps to find 
cases  where  terms  have  been  changed  or  renamed  and  the 
mappings  not  updated.  Most  significant  is  the  taxonomy 
comparison component. Given that we have terms A and B in 
SUMO and synsets X and Y in WordNet, if A is mapped to X 
and B to Y, Sigma checks whether if B is a subclass of A then Y 
is also a hyponym of X. The reverse case is also checked. An 
example of a mismatch in the two hierarchies is shown in Figure
3.

6 INFERENCE

Sigma  can  be  used  as  a  whole  for  theory  development, 
employing its inference component in the service of testing and 
debugging a theory.  The inference portion of Sigma can also be 
used  as  an  embeddable  component  in  applications  involving 
reasoning. An example application, the generation of stories for 
small children, will be discussed in detail in section 11 below.

The inference interface of  Sigma consists primarily of two 
Java methods:  ask, and tell. Clients tell statements in SUO-KIF 
to the knowledge base and then ask queries in SUO-KIF (along 
with some performance parameters such as the amount of time 
allowed for finding an answer).  The result of tell, if an answer is  
found, is a binding for any free variable in the query, along with 
a formal proof of how the answer was determined. In the story 
generation application, those bindings are then used to construct 
other queries or assertions.



Since  2003,  Sigma  has  used  an  open-source,  customized 
version of the Vampire [29] theorem prover called KIF-Vampire. 
Our  experience  with  practical  knowledge  base  systems  has 
shown that there are several features that are often needed, yet 
also usually absent from high performance theorem provers. In a 
typical use case in decision support applications, a user wants to 
be able to pose many queries to a knowledge base where most of 
the knowledge does not change from query to query, and where 
the set of available knowledge is quite large.  The user expects to 
get an answer to a query,  to be able to specify a timeout for  
difficult queries, and request multiple answers to the same query, 
if  available.  The  user  expects  to  get  some  information  that 
justifies why an answer is true. Performing basic arithmetic as 
part of inference is also desirable and even necessary for many 
common sense inferences.   Each of these features needed to be 
added  to Vampire by researchers at University of Manchester, to 
create the new KIF-Vampire.

Because  SUMO has  contained  a  limited  number  of  higher 
order constructs, and Vampire is strictly a first order prover, we 
have  employed  a  number  of  pre-processing  steps  to  translate 
SUMO into the more limited strict first order interpretation that 
Vampire  (and  other  provers)  can  handle.  The  same 

transformations are needed for the TPTPWorld interface, along 
with an additional set  of transforms (Figure 5).  We will  first 
discuss  the  pre-processing  steps  and  then  address  post-
processing

We have implemented two approaches for the first  step of 
removing  variables  from  the  predicate  position.  Our  first 
approach was to add a "dummy" predicate to all clauses other 
than those with logical operators.   For example, the following 
axioms, 

(instance part TransitiveRelation)

(<=>
  (instance ?REL TransitiveRelation)
  (forall (?INST1 ?INST2 ?INST3)
    (=>
      (and
        (?REL ?INST1 ?INST2)
        (?REL ?INST2 ?INST3))
      (?REL ?INST1 ?INST3))))

become

(holds instance part TransitiveRelation)

(<=>
  (holds instance ?REL TransitiveRelation)
  (forall (?INST1 ?INST2 ?INST3)
    (=>
      (and
        (holds ?REL ?INST1 ?INST2)
        (holds ?REL ?INST2 ?INST3))
      (holds ?REL ?INST1 ?INST3))))

This however resulted in worse performance for theorem provers 
that  give  special  indexing  priority  to  the  predicate  when 
searching  the  proof  space.   The  second  approach  was  to 
instantiate every predicate variable with all possible values for 
predicates in the knowledge base that meet the type restrictions 
that  may  be  implied  by  the  axiom.   The  rule  above  will  be 
duplicated with the variable ?REL being instantiated with every 
TransitiveRelation as in

(=>
  (and
    (part ?INST1 ?INST2)
    (part ?INST2 ?INST3))
  (part ?INST1 ?INST3))

This results in an automated expansion of the number of axioms, 
but does give good performance.  One limitation however is that 
the semantics of predicate variables is thereby limited to the set 
of predicates existing in the knowledge base, rather than ranging 
over all possible predicates.  

In the next preprocessing step we turn embedded formulas 
into  uninterpreted  lists  of  symbols  by  quoting  them.   This 
removes most of the semantics of such statements, including the 
semantics  of  logical  operators,  but  does  at  least  allow  for 
unification,  thereby  giving  the  appearance  of  higher  order 
reasoning in very limited situations. 

For example,

(believes John (likes Mary Jeff))

becomes

(believe John `(likes Mary Jeff))

This  allows  KIF-Vampire  to  perform very  simple  queries  on 
higher order statements, such as

Figure 5: Sigma pre- and post-processing steps



(believes John `(likes Mary ?X))

and get the correct answer of  Jeff.  However, logical symbols 
in the embedded formulas lose their meaning, so if

(believes John 
  '(and 
     (likes Mary Jeff) 
     (likes Bill Sue)))

is asserted, the same query will fail, as the and does not have its 
conventional meaning, and the two lists will not unify.

In  a  simple  third  step,  Sigma  translates  SUMO  basic 
arithmetic functions into the native symbols required by KIF-
Vampire. For the fourth preprocessing step we note that SUMO 
includes row variables [11], which are akin to the LISP @REST 
reference  for  variable-arity  functions.   We  treat  these  as  a 
"macro" and expand each axiom with a row variable into several 
axioms with one to seven variables for each occurrence of a row 
variable.   This  macro  expansion  approach  does  change  the 
semantics of row variables, simplifying the logic and improving 
its computational properties.  This limitation however does not 
appear  to  have  adverse  practical  consequences  for  common-
sense knowledge representation, which is the goal of SUMO.  

To explain what is done, take the following example, where 
the axiom 

(=>
  (and
    (subrelation ?REL1 ?REL2)
    (?REL1 @ROW))
  (?REL2 @ROW))

becomes

(=>
  (and
    (subrelation ?REL1 ?REL2)
    (?REL1 ?ROW1))
  (?REL2 ?ROW1))

and

(=>
  (and
    (subrelation ?REL1 ?REL2)
    (?REL1 ?ROW1 ?ROW2))
  (?REL2 ?ROW1 ?ROW2))

etc. up to the maximum arity currently allowed of 7.  Note that in 
axioms  such  as  this,  which  also  require  predicate  variable 
instantiation, we must restrain the expansion to only those arities 
which  are  compatible  with  the  instantiated  predicates.   For 
example,  located is a  subrelation of  partlyLocated and 
both have arity 2.  So, @ROW will only be expanded to the case of 
two variables.  In  the  few cases  where  axioms have  two row 
variables, this can result in 49 new axioms.  

Since we wish to keep Sigma as a completely open source 
system, we have not been able to upgrade to subsequent versions 
of Vampire, which are not open source, resulting in an inference 
component that is now somewhat out of date with respect to the 
state of the art.  We have worked to integrate the TPTPWorld 
suite  that  has  many  different  theorem  provers,  all  operating 
under  a  common  interface  [12].   The  different  provers  do 
however have different performance characteristics, and some do 
not provide proofs, so using this component does require a bit 
more  expertise  along  with  more  choice.   It  also  offers  the 
capability  to  use  the  servers  at  the  University  of  Miami  to 

remotely run the user's inferences, which can be beneficial for 
those who may not have powerful computers at their location.

Integration  with  TPTP  added  a  new  first  order  language 
capability to Sigma for ontology reading and for export [13].  It  
also highlighted a limitation of Sigma until that point.  Although 
SUMO has types defined for all relations, the logic itself is not 
typed.   That  meant  that  provers  would  not  necessarily  take 
advantage of type restrictions in limiting their search space, and, 
in certain cases, this could result in incorrect inferences, when 
inappropriate types were applied in finding solutions to queries. 
A theorem prover was free to use inappropriate types and then 
find a contradiction with SUMO's type restrictions, resulting in 
an  inconsistent  knowledge  base.   To  solve  this  problem,  we 
added a 5th step to the Sigma pre-processor, which adds type 
restrictions  as  a  new precondition  to  every  rule.   These  type 
restrictions  are  deduced  by  collecting  the  most  specific  type 
restriction implied by the use of each variable as the argument to 
a relation in the given axiom.

For example, consider the rule 

(=>
  (and
    (instance ?TRANSFER Transfer)
    (agent ?TRANSFER ?AGENT)
    (patient ?TRANSFER ?PATIENT))
 (not
    (equal ?AGENT ?PATIENT)))

All relations in SUMO are typed.  While we have an explicit 
type stated for ?TRANSFER, none is given in the rule for ?AGENT 
and  ?PATIENT.   However,  we  know from the  definitions  of 
agent  and  patient  that  their  second  arguments  are  given 
respectively as

(domain agent 2 Agent)
(domain patient 2 Object)

We can then modify the rule to add a new precondition with 
those type restrictions.

(=>
  (and
    (instance ?AGENT Agent)
    (instance ?PATIENT Object))
  (=>
    (and
      (instance ?TRANSFER Transfer) 
      (agent ?TRANSFER ?AGENT)
      (patient ?TRANSFER ?PATIENT))
    (not
      (equal ?AGENT ?PATIENT))

Combining these different preprocessing operations with the 
capability  to  generate  TPTP  language  versions  of  SUMO 
allowed  us  to  use  SUMO-based  tests  in  the  yearly  CASC 
competition  [14,15],  stretching  theorem  prover  developers  to 
work on high performance results in a new category of problems 
in which inferences of modest difficulty must be done on a very 
large knowledge base, where only a small number of axioms are 
relevant to a given query. A key recent innovation is the SUMO 
Inference Engine (SInE) [16], which selects only the subset of 
axioms likely to be relevant for a given query.

In addition to preprocessing, some post-processing is needed 
for all theorem provers that are used in Sigma.  All the TPTP 
provers that report full proofs, as well as KIF-Vampire, present 
and ordered list  of  deductions,  where premises  are  given and 



then a conclusion.  In presenting a proof to the user (Figure 6), 
we would like to avoid showing the same axiom many times if it 
is used in several proof steps.  We therefore assign a numerical 
index to each axiom, in order of its appearance in the proof.  The 
indexes can then be referenced when they are preconditions to a 
listed step, making the proof appear more similar to what a logic 
student will be used to from a standard textbook presentation of 
a proof.

An answer variable is a binding for a variable in a query that 
is unbound. In the proof shown in  Figure 6 ?X is an unbound 
variable  in  the  query.  For  TPTP  systems  that  do  not  report 
answer variables, or handle more than one answer per query, a 
more complicated approach is needed.  For systems such as EP, 
that report  proofs but not answer variables,  the axioms in the 
proof are resubmitted to the Metis prover [30] which does report 
answer variables.  Multiple answers are found by resubmitting 
the  query  with  a  new  clause  added  that  excludes  previous 

answers.   For  the  example  query  shown,  in  order  to  get  the 
second answer, the new query would become

(and 
  (instance ?X PrimaryColor)
  (not
    (equals ?X Red)))

At the  boundary of  diagnostics and inference we  have the 
general  case  of  using  theorem proving  to  find  contradictions. 
Because first order proving is not guaranteed to find all problems 
that may exist  in SUMO, Sigma includes a consistency check 
function that leads the theorem prover to consider each axiom in 
a knowledge base. This is an important point because a user may 
have a knowledge base that is inconsistent, but in practice may 
make many useful inferences over a long period of time while 
never having the problem show up in a proof. For example, take 
the knowledge base

Figure 6: Proof presentation in Sigma



(fatherOf John Bill)
(fatherOf John Mark)

(=>
  (fatherOf ?X ?Y)
  (and 
    (not  
      (exists (?Z)
        (and
          (fatherOf ?X ?Z)
          (not 
             (equal ?Y ?Z)))))))

While this knowledge base is trivially small, imagine that there 
are tens or hundreds of thousands of other statements, many of 
which  may  involve  the  predicate  symbol  fatherOf.   A 
complete examination of the proof space is impossible.  Imagine 
that the user poses the query

(fatherOf John Bill)

Given a finite and small amount of time with which to find an 
answer,  the  prover  may  just  find  and  return  "yes"  after 
encountering the first assertion.  It may not continue the search 
process  to  find  the  contradiction.   In  fact,  given  a  large  and 
complex  enough  knowledge  base,  and  a  complex  enough 
contradiction, it might not be found for years.

To help guide the search for contradictions, Sigma takes each 
axiom,  which  is  loaded  one  by  one  starting  with  an  empty 
knowledge base.  For each axiom, the prover is asked to compute 
whether  the  knowledge  base  contradicts  the  axiom,  or  is 
redundant with it.  If the axiom doesn't create a contradiction, it 
is  asserted  to  the  knowledge  base  and  the  next  axiom  is 
considered.  A contradiction will stop processing, since once a 
contradiction is  found,  any further results  may be nonsensical 
(although the answer also may not be nonsensical, as we have 
explained, so this is a conservative approach). 

Once  processing  finishes,  redundancies  are  collected  and 
reported.   At  its  simplest,  a  redundancy  can  be  a  duplicated 
statement,  and  that  is  clearly  an  error.  Although  initially 
harmless,  having the same statement in two places can easily 
lead to problems as an ontology evolves, as one statement might 
get  changed  while  a  duplicate  does  not.   For  example,  a 
developer might forget that a domain ontology file already has a 
statement 

(subclass Table Furniture)

and assert the same statement in a different file.
A  more  complex  case  is  where  one  statement  is  simply 

deducible  from  several  others.   This  is  often  intentional,  as 
knowledge engineers may wish to short-circuit a common chain 
of reasoning in order to have faster inference.  Such a case is  
even more likely to suffer from the problem of changes not being 
reflected  in  the  chain  of  deductions,  and  the  redundant 
conclusion.  For example,

(=>
  (instance ?P TransitiveRelation)
  (=>
    (and
       (?P ?A ?B)
       (?P ?B ?C))

    (?P ?A ?C)))

(subclass Table Furniture)

(subclass DiningTable Table)

(subclass DiningTable Furniture)

(instance subclass TransitiveRelation)

An intriguing possibility in contradiction detection would be 
to continue processing, knowing that the theorem prover may not 
run across the knowledge needed to prove a contradiction for a 
different query.  We might also explore treating an inconsistent 
knowledge base in a four-valued logic, where each axiom can be 
provably true, false, both or one or the other [31]. We might also 
explore whether an automatic process can be created to remove 
random axioms from a proof of contradiction, checking to see 
whether  a  contradiction  can  still  be  found,  and  reporting  the 
deleted axiom to the user when it is not.  This may assist the user 
in determining the appropriate correction to make by finding a 
subset of the axioms in the proof of contradiction that appear to 
be most responsible.

Similar  to  the  CASC competition,  but  on  a  much  smaller 
scale, Sigma has the capability to run a series of SUMO-based 
tests  for  any  theorem prover  it  supports,  reporting success  or 
failure and the time taken on each test.

7 HIGHER ORDER LOGIC

Another recent innovation is in translating SUMO to the new 
typed higher order format TPTP THF [18] for use by true higher 
order theorem provers [17,44]. The goal of this work is to better 
support higher order aspects in SUMO, in particular, embedded 
formulas,  temporal  operators  such  as  “holdsDuring“  and 
epistemic operators  like “knows“ and “believes”.  The first-
order based support for these concepts in Sigma is limited, with 
the  effect  that  many  desirable  inferences  are  not  supported, 
certain  queries  cannot  be  answered,  and  some  potential 
inconsistencies cannot be detected.  The following example on 
reasoning within temporal contexts illustrates the challenge. It 
expresses that whatever holds, holds at all times, that Mary likes 
Bill, and that during 2009 Sue liked whoever Mary liked.

(=>
  ?P
  (holdsDuring ?Y ?P))

(likes Mary Bill) 

(holdsDuring 
  (YearFn 2009) 
  (forall (?X) 
    (=> 
      (likes Mary ?X) 
      (likes Sue ?X)))) 

A higher order theorem prover such as LEO-II [35], which has 
been integrated into Sigma, can now effectively (in about a tenth 
of  a  second)  answer,  for  this  knowledge  base,  queries  like 
whether Sue liked Bill in 2009.

 (holdsDuring
   (YearFn 2009)
   (likes Sue Bill))

 or whether there is a year in which Sue has liked somebody.

 (holdsDuring
   (YearFn ?Y)
   (likes Sue ?X))

The  rule  (=>   ?P   (holdsDuring   ?Y   ?P))  can  also  be 
replaced by  (holdsDuring ?Y True),  and LEO-II finds an 



answer even more quickly. At the same time, this example is out 
of reach of the first order reasoning techniques described above. 
   A key aspect in the solution of the example is Boolean ex- 
tensionality, which ensures that the denotation of each formula, 
and  also  of  the  embedded  ones,  is  either  true  or  false.  This 
assumption  has  actually  never  been  questioned  for  SUMO. 
However,  assuming  Boolean  extensionality  also  leads  to 
problematic effects as the following slight modification of the 
example  illustrates  (instead  of  the  temporal  context  we  now 
consider an epistemic context). 

(knows ?Y True)

(likes Mary Bill)

(knows
  Ben
  (forall (?X) 
    (=> 
      (likes Mary ?X) 
      (likes Sue ?X)))) 

It is not a surprise that, given this knowledge base instead of the 
previous one and by using a similar reasoning pattern as before, 
LEO-II can effectively confirm the query

(knows Ben (likes Sue Bill))               

However, this inference is disturbing since we have not 
explicitly required that (knows Ben (likes Mary Bill)) 
holds, which intuitively seems mandatory.2 

Our  example  illustrates,  that  modalities  have  to  be  treated 
with great care in classical, extensional logic. Our ongoing work 
therefore  studies  how we can  suitably  adapt  the  modeling  of 
affected modalities in SUMO in order to appropriately address 
this issue. 

The solution we currently explore is to map SUMO reasoning 
problems that involve modal operators to problems in quantified 
multi-modal logics. Unfortunately there are only very few direct 
theorem provers for quantified multimodal logics available. We 
therefore exploit our recent embedding of quantified multimodal 
logics  in  classical  higher  order  logic  [39]  and  we  investigate 
whether this embedding can fruitfully support the automation of 
modal  operators in  SUMO  with  off-the-shelf   higher  order 
automated theorem provers.

Our ongoing research studies how non-classical reasoning can 
generally be integrated with and realized in classical higher order 
logic and how higher order theorem provers and model finders 
can be utilized for the task.  So far we have studied propositional 
modal logics and propositional intuitionistic logics [36], access 
control logics [37], quantified modal logics [39], and conditional 
logics [40]. Most importantly, combinations of these logics can 
be achieved in classical higher order logic [38], which is what 
we ultimately need in order to address challenge interactions of 
modal operators in SUMO.

9 MAPPING, MERGING and TRANSLATION

In addition to SUO-KIF and TPTP syntax, Sigma can also read 
and write OWL format [21]. Since many lightweight ontologies 
are currently being created in OWL, this feature opens up the use 
of Sigma to a large community, and provides a straightforward 

2It is important to note that True in A’ can actually be replaced 
by other tautologies, e.g. by (equal Mary Mary).

migration  path  to  use  of  a  more  expressive  logic  and  more 
sophisticated inference.  It also opens up the use of SUMO to a 
community that wishes to have simple and fast inference, since 
SUMO can be (and is) exported with a lossy translation to an 
OWL version.   While  the bulk of  the SUMO axioms are  not 
directly  expressible  in  OWL,  they  can  serve  as  informative 
comments  (and  in  fact  are  exported  as  human-readable 
comments) that serve to better define terms for the human user 
than if they were simply omitted.

We  should  note  that  a  general  philosophy  during  the 
construction of SUMO was not to limit it to the theorem provers 
or techniques available at the time of knowledge engineering. If 
something  needed  to  be  stated  to  capture  the  semantics  of  a 
concept, we used a logic expressive enough to state it.  The idea 
was that any statement too complicated for reasoning could at 
least be used as a formal concept.  It's always possible to leave  
out  complex statements  in  order  to  comply with the need for 
faster or decidable inference.  It is not possible,  obviously, to 
automatically create knowledge base content that does not exist,  
once  better  inference  capabilities  become  available.   This 
approach is paying off now that serious work is underway on 
practical higher order reasoning.

Sigma also includes an export of facts in Prolog form.  Once 
Sigma generates a TPTP version of an ontology, the TPTPWorld 
tools also handle a translation to Prolog that supports horn clause 
rules. There is also a simple prototype capability for exporting 
SQL  statements  for  database  creation  and  population  from 
Sigma.

The  growing  availability  and  coverage  of  lightweight 
taxonomies  that  cover  domain  specific  knowledge,  and  the 
corresponding  phenomenon  of  "linked  data"  as  a  community 
objective has encouraged the addition of an ontology mapping 
and merging capability to Sigma.  It is based on earlier work on 
a  stand-alone  tool  [23].   In  mapping  SUMO  to  simple 
taxonomies there is often very little information for the machine 
to  use to  determine what matches might exist.   The principal 
problem  appears  to  be  massive  numbers  of  false  positive 
matches.  A simple algorithm appears to do as well in practice as  
a more sophisticated one, since the bulk of effort is still spent by 
a human in selecting accurate matches.   Having a simple and 
easy  user  interface appears  to  provide  more  leverage than an 
incrementally better matching algorithm.  The Sigma matching 
tool  has  been  used  to  create  an  initial  alignment  with  the 
lightweight  Open  Biomedical  Ontologies  (OBO)  [24],  among 
others.  Such an alignment is problematic however, because little 
verification is possible.  As is typical of most products that are 
being  called  ontologies,  OBO  consists  mostly  of  taxonomic 
relations,  with  no  rules  and  few  axioms  besides  class 
membership.

10 WORKING with SIGMA and SUMO

There  are  as  many  possible  processes  for  formal  ontology 
development  as  there  are  for  software  development.   Small 
projects  may  benefit  from  the  low  overhead  of  an  informal 
process.   Large  projects  with  big  teams  will  benefit  from  a 
greater degree of formal process.  A typical process employing 
Sigma to extend SUMO is as follows:



• Developers  use  a  set  of  instructions  or  documents  as  a 
source, or write down text in natural language that describes 
the domain of interest.

• The text is used as a basis for creating a glossary of natural 
language terms and definitions

• Developers  examine the SUMO hierarchy (using the term 
browser,  and  tree/graph  browser)  for  each  term  in  the 
glossary. The WordNet search pages are used to find all the 
different meanings of each defined word in the source text, 
and  the  WordNet-SUMO  mappings  are  used  to  find  the 
formal SUMO term that best fits the intended meaning of the 
textual  term.   For  any  substantially  new  and  specialized 
domain,  the  task  is  to  find  a  more  general  term  that 
encompasses the meaning of the more specific textual term. 
Textual terms that are already covered by specific SUMO 
definitions  are  put  aside  as  complete.  For  new terms  and 
definitions  that  are  needed,  developers  begin  by  adding 
subclass or instance statements to the appropriate leaf term in 
SUMO,  by  creating  and  editing  a  text  file  in  SUO-KIF 
format.

• Once  a  preliminary  SUO-KIF  file  has  been  created, 
developers load it into Sigma, along with SUMO proper and 
all  the  other  domain  ontologies  the  new file  may extend. 
Developers run the Sigma Diagnostics to find any errors.  

• Developers  use  the  information  in  the  natural  language 
definitions  created  earlier  to  guide  creation  of  SUO-KIF 
axioms. Each class should have at least a subclass statement 
and a documentation statement.  Each relation should have 
domain  statements  defining  the  class  membership  of  its 
arguments, and be defined as an appropriate type of relation, 
such as  TransitiveRelation.  Each term should have at 
least  one  rule,  that  helps  to  make  the  term  usable  for 
inference.  If  there  are  very  few  things  that  can  be  stated 
about the term, reconsider whether it should be created.

• Developers create  format and  termFormat statements in 
the  language  of  choice  to  support  natural  language 
paraphrases  in  Sigma  for  the  axioms  previously  written. 
These can be presented to domain experts to help confirm 
that the desired knowledge has been captured correctly.

• Developers map the terms in the ontology to WordNet. This 
is  accomplished  by  placing  links  in  the  existing  SUMO-
WordNet mapping files (if mapping to English) that update 
the existing links where needed to point to the more specific 
terms that have just been created

• Developers  load  the  revised  WordNet  mapping  files  into 
Sigma and use the Sigma WordNet Diagnostics to see where 
the  WordNet  hierarchy  may  differ  from  the  formal 
relationships created in the new ontology. The existence of 
differences  is  not  necessarily  bad,  but  they  should  be 
examined and understood.

• Developers  run the Sigma Consistency Check to find any 
logical contradictions in the new theory.   Normally, there 
will  be  many  cycles  of  adding  content,  then  running  the 
Diagnostics and Consistency Check processes in Sigma to 
find and correct errors as the theory is elaborated.  At each 
iteration where no errors are found, in a group development 

process,  the  theory  would  be  uploaded  to  a  source 
configuration  management  system  such  as  CVS  or 
Subversion.   Other  developers  are  then  free  to  test  new 
theories with respect to their own work, and coordinate with 
each other.  One can view the Diagnostics and Consistency 
Check  steps  as  analogous  to  compilation  and  build  of  a 
conventional procedural computer program.  

• Peer  review is  one of the best ways to improve a theory.  
Sigma helps developers significantly beyond just reviewing a 
file of declarative code, allowing them to search and test a 
theory in many different ways.

11 EXAMPLE APPLICATION

The primary use  of  Sigma has  been as  an IDE for  ontology, 
rather than as an embeddable component. Many ontologies are 
developed as an end in themselves for structuring information or 
supporting  database  design.  An  example  of  this  sort  of 
application is [62].

In  order  to  provide  an  example  of  how Sigma  is  used  in 
practice to develop embedded applications, we now discuss the 
"SUMO  Stories"  project,  which  uses  SUMO  and  Sigma  to 
automatically  develop  short  stories  for  small  children. 
Elsewhere [34] we discuss the project in more detail.  Here we 
will focus on how Sigma supports the project.

The first  step was to collect the knowledge relevant to the 
application and state it  as informal English sentences.   In this 
case,  a  prior  application [41]  that  used linguistic  methods for 
story production rather than deductive inference,  provided this 
corpus of sentences.  An example fragment of a story from [42] 
is

"The afternoon was windy. Rizzy the rabbit  was in the  
dining room. She played near a lamp. Rizzy broke the  
lamp. She was scared. "

In simple sentences from a children's story, it is easy to pick 
out the concepts that need to be captured formally - "afternoon",  
"windy", "dining room", "lamp", "breaking", and "scared".  An 
experienced user of SUMO may already know the names for the 
likely SUMO classes that encode these concepts or their parents 
and be able simply to enter names and the "KB term" field of the  
browser (see Figure 2), then confirm that the definitions match 
the user's intuitions about the way the words are used in the text. 
A less experienced user will enter words in the "English Word" 
field to search WordNet word senses, and see the SUMO links 
for each word sense.

For one example term, take "breaking".  It has 59 different 
senses in WordNet.  The most appropriate senses are linked to 
SUMO's Damaging and Destruction.  The difference in those 
two  subclasses  of  process  are  a  case  of  extent,  with 
Destruction being the more serious.   By the formal  axiom 
(and the definitions of the other terms that appear in the axiom)



(<=>
  (instance ?PROCESS Destruction)
  (exists (?PATIENT)
    (and
      (patient ?PROCESS ?PATIENT)
      (time ?PATIENT
        (BeginFn
          (WhenFn ?PROCESS)))
      (not
        (time ?PATIENT
          (EndFn
            (WhenFn ?PROCESS)))))))

we see that Destruction entails that the patient of the process 
or some essential part of it must cease to exist at the end of the 
event. In the case of a child breaking a lamp, the lamp might 
simply have a crack in its base.  We can only state a more vague 
and general notion of breaking equivalent to the SUMO notion 
of Damaging.  

We  should  note  that  the  formal  axiom  makes  clear  the 
differentiation  between  the  two  classes.   If  we  had  only  a 
hierarchical  relationship  specifying  that  one  term  was  a 
specialization  of  the  other,  or  even  the  informal  English 
description of the terms that is also present in SUMO, we would 
not be able to make this informed choice, or have the consequent 
of  the  rule  above  follow as  a  logical  fact  from asserting  the 
existence of a  Destruction.

In any application, there are likely to be notions that are not 
already completely captured by existing SUMO terms.  Human 
emotions comprise one such area.  Formalizing such a complex 
area  was  outside  the  scope  of  the  SUMO Stories  effort,  but 
simple  subclasses  of  the  existing  EmotionalState attribute 
class were created to handle notions such as being "scared".

Rules  were  defined  to  govern  the  behavior  of  the  story 
characters.  This proved to be challenging, since rules needed to 
state that certain actions were possible or likely, but  in many 
situations these were not definite consequences of certain states 
in the story world.  A child playing near a breakable lamp in the 
story likely results in a broken lamp, but not always.  Also, a 
story generator that generates the same story for the same set of 
initial conditions each time is not very interesting.  We began 
with statements employing the SUMO capability relation that 
provides an embedding of a modal statement inside a first order 
logic (we will return to explain why this is a modal in a few 
paragraphs below).  However, it proved too limiting for the story 
description.  We are now exploring a lightweight implementation 
of a probabilistic logic framework,  but still  using the existing 
SUMO terms.

In the current implementation, we created rules that express 
what the characters are capable of doing given the environmental 
conditions  and  phase  of  the  story.   Java  code  calls  Sigma's 
inference API with a query template such as 

(capability ?P ?R ?O)

where the capability relation takes three arguments: a process 
type, a role that a thing may play in a process, and an instance of 
an Object.  There may be several answers to such a query.  One 
might be that 

(capability 
  RecreationOrExercise 
  experiencer 
  Rizzy)

meaning that Rizzy the rabbit  character is capable of playing, 
given the current state of the world.  

We should  digress  now for  a  moment  to  explain  why the 
capability  relation  is  considered  modal.  Given  the  challenges 
involved in true higher order reasoning,  we have also tried to 
provide  first  order  encodings  in  SUMO  for  notions  that 
traditionally would require a higher order statement.  The notion 
of capability is one such expression.  The relation is used to 
state that events of a certain type and relation to another object  
may occur.  A more traditional encoding of  the statement above 
would be

(possible
  (exists (?R)
   (and
     (instance ?R RecreationOrExercise)
      (experiencer ?R Rizzy))))

Such statements are fairly common, and yet a higher order 
encoding can be a barrier to successful practical inference.  A 
first  order  encoding  sacrifices  some  of  the  semantics  of  the 
higher order version, but enough utility is retained in practice to 
make statements of this type a valuable addition to SUMO.

Returning  now to  our  example,  answers  are  returned  in  a 
prescribed format, with successful queries resulting in either a 
yes/no  answer for  queries  with no  variables,  or  in  an answer 
structure  that  provides bindings for  variables  (such as  "?R = 
experiencer" in the example above), accompanied by a proof 
of how those binding were found.   SUMO's Java process will 
pick  one  of  the  capabilities  to  assert  (again  through  Sigma's 
inference API) as a true fact in the story world.  SUMO's Java 
process will then ask another query to determine the events in 
the next phase of the story. 

12 Related Work

Numerous ontology editors and knowledge engineering tools 
exist today. Prominent examples include Protégé [47], Specware 
[48],   SWOOP  [49],  Top  Braid  composer  [54],  OilED  [50], 
WebODE [51], Ontolingua [52], KAON [53], Internet Business 
Logic [55], OntoTrack [56], SemanticWorks Semantic Web tool 
[57]  and  IHMC  Cmap  Ontology  Editor  [58].  Survey  articles 
exist that compare and summarize  main features of such tools 
[59,60,61].  These surveys show that  actually very few editors 
and tools exist that support expressive languages such as CycL, 
KIF, or SUO-KIF.

A  particular  unique  feature  of  Sigma  is  that  it  is  directly 
linked to the TPTPworld [12] infrastructure and that it integrates 
various off-the-shelf first-order automated theorem provers and 
very recently even an off-the-shelf higher-order theorem prover. 
In  this  regard,  the largest  body of  work potentially  related to 
Sigma  is  instead  actually  part  of  the  system  already.  These 
integrated reasoners support consistency checking but they can 
also  be  applied  for  other  purposes  including,  for  example, 
question answering. It should be possible to enhance tools like 
Protege also with some of the reasoning functionality supported 
in  Sigma.  However,  this  would  clearly  require  major 
implementation  effort.  With  regard  to  integration  of  theorem 
provers  the  Specware  system  is  probably  closest  related  to 
Sigma.



In many respects Sigma is also related to the ProofGeneral 
system [26]. ProofGeneral provides powerful and configurable 
interfaces which help user-interaction with proof assistants.  In 
Sigma  we  are  mainly  interested  in  interfaces  to  automated 
theorem  provers  though.  However,  like  in  ProofGeneral,  our 
interest is to support the presentation and explanation of machine 
proofs to the user.  

13 SUMMARY and CONCLUSIONS

Sigma has served two main purposes.  It is a practical tool that 
has supported the development of the SUMO.  It is also a toolkit 
and  testbed  that  is  used  to  support  experiments  in  ontology 
application and logical reasoning.  Sigma has co-evolved with 
SUMO with each becoming more sophisticated and extensive as 
they  progressed.   The  regular  open  source  release  of  both 
products  has  and will  continue to  form a unique resource for 
academic and commercial researchers and practitioners engaged 
in  ontology,  natural  language  understanding  and  formal 
reasoning.

There  are  several  efforts  we  are  pursuing  to  expand  the 
functionality and utility of Sigma.  

First is to package a formal release.  It has proven difficult to 
provide regular binary releases with consistent functionality and 
documentation  at  regular  intervals,  even  though  open  source 
development releases have always been available to those who 
are  willing  to  compile  from source  and  deal  with  a  research 
toolkit.  

Second is a major effort  to provide a formal semantics for 
SUO-KIF's  higher  order  statements  in  combination  with 
choosing an appropriate semantics for SUMO's modal operators, 
and  to  accordingly  adapt  our  recent  translation  to  THF [18]. 
LEO-II and other THF compliant provers can then be uniformly 
applied to problems encoded in SUO-KIF, including the SUMO, 
and  they  can  subsequently  be  improved  with  regard  to  the 
particular challenges in question answering. 

Once  a  formal  semantics  for  SUO-KIF's  higher  order 
statements is fixed, we ideally would also like to devise a highly 
trusted verification component for SUMO. The idea is that this 
verification  component  should  be  capable  of  exploiting  proof 
information  (such  as  generated  answer  to  queries  and  axiom 
selections) from other inference engines in order to reconstruct 
proof  objects  on  its  own  in  a  highly  trusted  (ideally  fully 
verified) reasoning engine. The hope is that with additional proof 
information  available  reconstruction  of  the  proofs  should  be 
generally possible even when the trusted reasoning engine is not 
particularly well suited for high performance proof automation. 
Overall we would thereby achieve a two level support for proof 
automation in  SUMO: the aim of  the  first  level  would  be  to 
provide various means  for  high  performance  automated proof 
search,  and verifying the soundness  of  the generated  answers 
would be the task of the second level.  Consulting the second 
level could be optional, for example, only if a user finds a query 
answer  suspicious.  In  safety  critical  applications  it  could  be 
made a general standard though. The advantage of the two level 
approach  would  be  that  even  potentially  unsound  proof 
automation  means  could  be  considered  as  useful  in  Sigma, 
provided  that  their  soundness  leaps  are  only  of  low practical 
relevance. These few soundness leaps could then still be detected 
by the second level.

Lastly, we are developing a simple first order theorem prover 
in Java as an integrated part  of Sigma.  This will  serve as an 
educational  tool,  and  a  testbed  for  developing  features  for 
theorem provers that demand access to the internals of a prover.
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